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Abstract—GitHub facilitates software development practices
that encourage collaboration and communication. Part of
GitHub’s model includes forking, which enables users to make
changes on a copy of the base repository. The process of forking
opens avenues of communication between the users from the
base repository and the users from the forked repositories.
Since forking on GitHub is a common mechanism for initiating
repositories, we are interested in how communication between
a repository and its forks (forming a software family) relates to
stars. In this paper, we study communications within 385 software
families comprised of 13,431 software repositories. We find that
the fork depth, the number of users who have contributed to
multiple repositories in the same family, the number of followers
from outside the family, familial pull requests, and reported issues
share a statistically significant relationship with repository stars.
Due to the importance of issues and pull requests, we identify and
compare common topics in issues and pull requests from inside
the repository (via branching) and within the family (via forking).
Our results offer insights into the importance of communication
within a software family, and how this leads to higher individual
repository star counts.

Index Terms—Empirical study, Open source software, Data
mining, Software maintenance, Software family

I. INTRODUCTION

GitHub is the largest open-source software host with almost
one third of its 96 million repositories created in 2018 [1].
A unique feature to GitHub is its ‘fork and pull model’,
which allows users to create copies of a repository and freely
experiment without affecting the base repository. Forks are
also used for requesting changes to the base repository, or
act as starting points for different ideas [2]. As such, forking
a repository creates an opportunity for social relationships
to form between users in the base repository and users in
the forked repositories. It has been shown that studying a
repository’s forks is important to account for all activity within
a software project [3], [4].

Furthermore, forks are one of many factors correlated
with stars, including number of committers, issues, and new
contributions by popular users [5]-[7]. However, many studies
have not investigated how users who are creating the forks,
issues, and contributions participate in related sets of repos-
itories such as within a repository and its forks. Our study
deconstructs several communication metrics to determine how
users’ involvement relative to different repositories relate to
star count.
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We define a software family as a repository (that is not
forked from another) and its forks. We refer to the base repos-
itory as the parent repository, and its forks as its children.
Each child can also be forked into another repository, thus
forming a family of repositories capable of creating social
relationships through direct communication lines in software
artifacts such as pull requests (PRs), issues, and mentions. A
family f; can be more formally defined as:

In equation (1), 7¢ is the parent repository, 7';7 j # 1 are the
children, and m; is the number of repositories in family <.

GitHub offers users the ability to star a repository. A star
can be used by users to show appreciation for a repository,
keep track of its activities, and discover related content on
their main feed [8]. Many studies have used stars to represent
popularity [7], [9]. Popularity is useful for open source com-
munities, as more popular repositories attract new contributors
and relay to the repository’s developers that their software is
being used [9]. Studying factors that are associated with stars
is useful for maximizing repository popularity.

In this paper, we analyze the importance of communication
within active software families in relation to stars. We address
the following questions:

RQ1) How does repository star count vary within and
among families? We are interested in determining which
repositories in a family have the most stars. Users from
child repositories can create PRs and issues for their parent
repositories and vice versa, possibly leading to more engaged
repositories and higher star count. We conducted a Kruskal-
Wallis test to compare the distribution of stars among families,
which showed that some family star distributions differ [10].
A post-hoc Dunn’s test revealed that 76% of the families we
analyzed have similar star distributions, with the parent having
the majority of stars [11]. We discovered it is rare for child
repositories to surpass the star count of their parents, and
stars decrease as repositories are forked further away from
the parent.

RQ2) How much communication takes place among repos-
itories within a family? We are interested in determining
the amount of communication that takes place within and
among families. In particular, we are interested in determining



if there is significant communication between users in the
same family. We calculated several metrics of communication
between users within a repository, within the family, and
outside the family. We observed that the majority of PRs are
with family members, many users contribute to repositories
across the same family, and the fewest number of issues are
reported by users in the same family. We conclude that there
is a significant amount of communication that takes place
between repositories in the same family, even though the
majority of communication takes place between users from the
same repository, and between users from the same repository
and outside the family.

RQ3) How does communication, in the context of a
family, relate to stars? Since RQ2 has shown that there
is a significant amount of communication that takes place
between repositories in the same family, we are interested
in determining the significance of familial communication
on repository star count. We conducted a linear regression
analysis and found that the fork depth, the number of users
that have contributed to repositories in the same family, the
number of followers from outside the family, and PRs between
repositories in the same family have a significant relationship
with star count. We then conducted a relative importance
analysis of communications among users within repositories,
among users within the family, and among users outside the
family. We found that communication within families has the
strongest relationship with star count.

RQ4) What are the topics within the communications?
In RQ3, we found that the number of reported issues and
PRs among repositories in the same family have a significant
positive relationship with stars. Therefore, we are interested
in whether issues reported from users in the same repository,
family, or outside the family communicate about different
topics. We are also interested if PRs from within the repository
or PRs with family members discuss different topics. We
conducted structural topic modeling on 59,023 issues and
65,756 PRs. With respect to issues, we determined that,
depending on whether users are from the same repository, from
the same family, or from outside the family, they report issues
on different topics. However, with respect to PRs, there was
no observable difference in topics from inside the repository
or from the family.

Our contributions are as follows: (a) we introduced the
notion of a software family to differentiate interactions from
different users relative to each repository, (b) we discovered
that communications between users in a repository and users in
its family share a significant relationship with stars, and (c) we
showed that users report issues on different topics depending
on whether they are from the repository, family, or outside the
family. The findings of this study emphasize the importance of
collaborations between users working on related code-bases.

II. STUDY SETUP

A. Data Collection

GHTorrent provides a mirror to GitHub’s REST API and
repository history, allowing access to terabytes of information

hosted by GitHub [12]. The GHTorrent project continuously
gathers data from the GitHub public event timeline, and
stores them in a publicly available MySQL database. We
used the mysql-2019-03-01 dataset, which holds data on
116,217,069 repositories and 30,600,309 different users.

Starting with 116,217,069 repositories, we performed the
following 7 steps to identify software families for our dataset:

1) Removing Non-collaborative Repositories: We are in-
terested in repositories that use the collaborative aspects of
GitHub. We removed repositories that have not participated in
PRs or GitHub’s issue tracker, which narrowed our dataset to
16,382,096 repositories.

2) Family Identification: We classified families by first
identifying parents within the dataset. This was done by
choosing repositories that were not forked from another. If
a repository was not forked, it was labelled as a parent. We
then recursively iterated through each parent’s children until an
entire family was formed. This resulted in 7,764,074 families
composed of 16,250,265 repositories. We excluded 141,831
repositories whose parent repository was deleted. When a
parent repository is deleted, GitHub selects one of its children
as the new parent repository [13]. Even though subsequent
children can be created from this new parent, GHTorrent does
not update its information about the new parent. Therefore, we
were unable to identify the parent in families whose original
parent was deleted.

3) Removing Small Families: A minimum of 10 members
per family is required for stable results in a logistic regression
analysis [14]. Therefore, we removed families with fewer than
10 repositories. This reduced our dataset to 143,945 families
with 5,589,713 repositories.

4) Removing Personal Repositories: Despite GitHub’s
commitment to social coding, many repositories on GitHub
are personal repositories [3]. Because we are interested in
studying communication among multiple users, we removed
families with only 1 unique committer, resulting in a dataset
of 143,566 families composed of 5,582,280 repositories.

5) Selecting Software Repositories: A large portion of
repositories on GitHub are not used for software develop-
ment [3]. To obtain a representative sample of software
repositories with 95% confidence, we randomly sampled with
replacement 385 parent repositories in our dataset. We cat-
egorized each repository as ‘software’ or ‘other’ using the
classification system from Kalliamvakou et al. [3]. We kept
each parent repository classified as ‘software’ for our dataset,
and excluded each parent repository classified as ‘other’,
until 385 parents were selected. Repositories that could not
be categorized due to a language barrier were not used in
our analysis; only English repositories were selected. Our
classifications were verified with an independent source, a
computer science graduate student with industrial and GitHub
experience, with 93% agreement.

Our final dataset F' is formed of 385 software families
comprised of 13,431 repositories:

F={f}i=1,..38 2)



6) Mining Discussion Comments: GHTorrent provides a
comment_id for comments in PRs and issues. However, it
does not contain the comments themselves. We mined GitHub
using GitHub’s API for PR and issue comments for each
repository. We then matched the mined comment IDs to the
comment IDs found in GHTorrent to stay consistent with
GHTorrent’s data.

7) Identifying Repository Users: Lastly, as of 2014, GitHub
disabled the API endpoint used to retrieve user repository
memberships. We used the heuristics described by GHTorrent
to create a list of users belonging to each repository by looking
at original commit authorship and mergers of PRs [13]. Fake
users as defined by GHTorrent were excluded. The set of users
for each repository r§ in family f; is:

Ul={ul},k=1,...n; 3)

In equation (3), ¢ is the family number, j is the repository
number, and n; is the number of users belonging to to 7.

B. Data Pre-processing

We performed the following 3 steps to calculate commu-
nicative data for each software family:

1) Sentiment Analysis: We first identified the language
of each comment obtained in our data collection phase.
langid.py is an off-the-shelf language identification library
pre-trained on 97 languages with high accuracy across all
domains [15]. We determined the language of each comment
as the highest probable language reported by langid.py.
We manually inspected a sample of 384 comments and found
langid.py to be 95.6% accurate. We then determined
the sentiment of each English comment using SentiStrength-
SE, a domain-specific sentiment analysis tool for software
engineering texts [16]. Because SentiStrength-SE is trained
on English comments, non-English comments were excluded
from our sentiment analysis. SentiStrength-SE reported two
sentiment strengths for each comment: a positive score and a
negative score. The positive score returns a 1 (not positive)
to 5 (extremely positive), and the negative score returns -1
(not negative) to -5 (extremely negative). Two scores are re-
turned separately because people process negative and positive
emotion in parallel, as shown by Thelwall et al. [16]-[18].
Because of this, we also treat them as separate metrics in our
analysis. Table I shows examples of SentiStrength-SE’s output.

2) Calculating Star Count: Stars are important for open-
source software repositories on GitHub, as more stars attract
new developers, and indicate to developers that their software
is being used [9]. Stars are used to show appreciation and
interest for a repository. Many studies have used stars as a
representation for popularity [7], [9].

Forks have also been used as a proxy for repository popu-
larity and are highly correlated with stars [19]-[21]. Commits,
programming language, and application domain have also been
shown to be correlated with stars [9], [22]. However, due to
the importance of stars on GitHub, and because our study is
focused on families which are defined by forks, we chose to

TABLE I: SentiStrength-SE examples.

Comment ID | Positive | Negative | Comment

Score Score
223111194 4 -1

**Thank you!** This works
like a charm! And also thank
you very much for providing
this really awesome theme!
Same here... Makes me very
sad :(

Other than the poor config
name, looks good

333778837 1 -5

55693166 2 2

use stars as our response variable. The number of stars per
repository is readily available in our dataset.

3) Calculating Explanatory Metrics: Table Il shows a com-
plete list of 66 metrics calculated for our linear regression
model. We selected communication metrics and measured
them relative to each repository as follows: a) users within the
repository (ending in _repo), b) users in the family (ending in
_famaly), and c) users not in the family (ending in _outside).
For a given metric category (e.g. issues), each user belongs
exclusively to one of these categories. For example, the repos-
itory r{ of family f; (containing [ repositories) has 378 issues,
with 68 issues reported by users U3, who are members of 77,
41 issues reported by users U N {Us + Us + ... + Ut} = {},
who are members of f4 (and not 1), and 269 issues reported
by users {U{ + Uj... + U}, who are not members of
f1. In Table II, these metrics are defined as issues_repo,
issues_family, and issues_outside, respectively. If an issue
was reported by a user belonging to both 7{ and a different
repository in the same family fy4, this issue will count towards
category a) users within the repository. If an issue was reported
by a user belonging to both f; and a different repository
outside the family, this issue will count towards category b)
users within the repository. If an issue reported by a user who
belongs to neither r} or a different repository in the same
family fy, this issue will count towards category c) users not
in the family. Our metrics fall under the following categories:

Forks. We calculated the number of forks per repository, and
the number of active_forks (forks that have participated in
an issue or PR within the family) per repository, to validate
how the number of forks relate to stars. We also calculated
depth, the amount of subsequent forking from existing forks,
as coined by Lima et al. [23]. Figure 1 follows the tree-like
structure also noted by Lima et al. [23], with the deepest
repository of fogs having depth = 3, and the deepest reposi-
tories of fgo having depth = 1. Parents of both families have
depth = 0. This is to measure the relationship between star
count and distance from the parent.

Users. Previous research has shown that the number of con-
tributors is weakly correlated with stars [9]. We considered
the number of unique users U ; per repository, as well
as the number of unique users per repository rj that have
also contributed to another repository in the same family,
U N {U{ + Uj + ... + U}, to determine their respective
relationship to stars.



TABLE II: Metrics calculated for each repository in each family.

Category [ Metric [ Description
Response stars Number of stars.
Age age How long (in hours) the repository has existed.
depth Number of forks away from the parent repository.
Forks forks Number of forks created from the repository.
active_forks Number of forks created from the repository that opened a PR or issue within the family.
users_repo Number of users that have write access to the repository.
Users users_also_in_family Number of users that have write access to the repository, and to at least one other
repository in the same family.
followers_repo Total followers of each user in the same repository.
Followers followers_family Total followers of each user in the same family.

followers_outside

Total followers of each user outside the family.

Pull Requests

pr_repo
pr_family

Number of PRs that have occurred within the repository (via branching).
Number of PRs that have occurred within the family (via forking).

PR Comments

pr_repo_comments
pr_family_comments
pr_repo_code_comments
pr_family_code_comments

Number of discussion comments from a PR within the repository.
Number of discussion comments from a PR within the family.
Number of code comments from a PR within the repository.
Number of code comments from a PR within the family.

PR Sentiments

positive_sentiment
negative_sentiment

The average positive sentiment calculated for each metric in the PR Comments category.
The average negative sentiment calculated for each metric in the PR Comments category.

PR Mentions

pr_mentioned_repo
pr_mentioned_family
pr_mentioned_outside
pr_mentioned_unique_repo
pr_mentioned_unique_family
pr_mentioned_unique_outside

Number of users mentioned in a PR belonging to the same repository.
Number of users mentioned in a PR belonging to the same family.

Number of users mentioned in a PR from outside the family.

Number of unique users mentioned in a PR belonging to the same repository.
Number of unique users mentioned in a PR belonging to the same family.
Number of unique users mentioned in a PR from outside the family.

Issues

issue_repo
issue_family
issue_outside

Number of issues opened by a user belonging to the same repository.
Number of issues opened by a user belonging to the same family.
Number of issues opened by a user from outside the family.

Issue Comments

issue_comments_repo
issue_comments_family
issue_comments_outside

Number of comments from issues opened by a user belonging to the same repository.
Number of comments from issues opened by a user belonging to the same family.
Number of comments from issues opened by a user from outside the family.

Issue Sentiments *

positive_sentiment
negative_sentiment

The average positive sentiment calculated for each metric in the Issue Comments category.
The average negative sentiment calculated for each metric in the Issue Comments category.

issue_mentioned_repo
issue_mentioned_family
issue_mentioned_outside
issue_mentioned_unique_repo
issue_mentioned_unique_family
issue_mentioned_unique_outside

Issue Mentions

Number of mentions in an issue opened by a user from the repository.
Number of mentions in an issue opened by a user from the family.

Number of mentions in an issue opened by a user outside the family.
Number of unique mentions in an issue opened by a user from the repository.
Number of unique mentions in an issue opened by a user from the family.
Number of unique mentiona in an issue opened by a user outside the family.

issue_closed
issue_subscribed
issue_unsubscribed
issue_reopened
issue_assigned
issue_referenced

Issue Events *

Number of issues closed.

Number of users who have subscribed to an issue.
Number of users who have unsubscribed from an issue.
Number of users who have reopened an issue.

Number of users assigned to an issue.

Number of users referencing an issue.

* All metrics have been calculated for users in the same repository, family, and outside the family.

1 All metrics have been calculated for users in the same repository and family.

Followers. We considered the set of users U Jl for each reposi-
tory 7. We calculated the total number of followers limited to
Uj, the total number of followers from the same family f;, and
the total number of followers from outside f; to determine the
importance of familial following behavior to repository stars.
Pull Requests. We calculated the number of PRs within each
repository 7’; as well as each PR with other repositories in
the same family f;. This is to compare the relationship of PRs
with the family and PRs in the repository with star count.
PR Comments. We considered the number of PR comments
coming from users within the same repository U?, as well as
comments from users belonging to repositories in the same
family U7 N{U{ 4+ U3+ ... + U},,} = {} in order to determine
the relationship between comments and stars.

PR Sentiments. A positive or negative sentiment may affect
willingness to star a repository. We performed a sentiment
analysis for all PR comments in the PR Comment s category.

PR Mentions. Mentioning a user in a PR Comment who is
from the same repository, family, or outside the family may be
representative of more social engagement, which may lead to
more stars. We calculated the number of @mentions for each
user in the repository, in the family, and outside the family.
Issues. Previous research has shown that the number of issues
in a repository is positively correlated with forks [6], which is
correlated with stars. We measured how many users from the
repository, family, or outside the family are opening issues to
determine each respective effect on stars.

Issue Mentions. Similar to PR Ment ions, we calculated the
number of @mentions in issue comments for each user in the
repository, in the family, and outside the family.

Issue Comments. We considered the number of issue
comments from users within the same repository, users
belonging to repositories in the same family, and users
outside the family.
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Fig. 1: Software families f264 (left) and fg2 (right) with

| f264] = 11 and | fs2| = 10, showing their a) forks, b) issues, and
c) PRs between family members (volume omitted).

Issue Sentiments. Similar to PR Sentiments, we per-
formed a sentiment analysis for all comments in the
Issue Comments metric.

Issue Events. Certain actions can be performed on issues such
as closing, subscribing, assigning, and referencing. Using these
different GitHub events may be reflective of a more active
repository, which may affect the star count. We considered
the number of events triggered by users in the same repository,
within the family, and outside the family.

III. APPROACH AND RESULTS

RQ1) How does repository star count vary within and among
Sfamilies?

Motivation. We are interested in the distribution of stars
among families to compare parent repository star count with
their children’s. Users in child repositories can create PRs and
issues for their parent repositories and vice versa, possibly
leading to more engaged repositories and more stars.
Approach. We tested our families for homogeneous variances
using a Levene test [24]. We then conducted a Kruskal-
Wallis test to compare the star distribution among our 385
collected families [25]. We performed a post-hoc Dunn’s
test to determine differences in family star distributions, then
compared the distribution of stars between parent repositories
and their children [26].

Findings. The Levene test showed that our families have
homogeneous variances (p = 1), which allowed us to conduct
a Kruskal-Wallis test. Our Kruskal-Wallis test showed that at
least one of our families did not have the same distribution (p =
7.537e-08). We then conducted a post-hoc Dunn’s test, which
revealed differing family distributions. We separated families
with similar distributions, and found that 293 families (76%)
had similar distributions.

We then binned the total number of stars by fork depth.
Fig. 2 shows that most stars from our sample belong to the
parent repositories, with stars decreasing the further children
are from the parent. This is despite the fact that most children
in our sample are immediate forks from the parent.

& 1,000,000
T 10,000 J:| B Repositories
= 100 |:|I:| O Stars
=]
& X bm -
0 1 2 3 4 5

Depth

Fig. 2: Number of repositories and stars at different depths.

Lastly, we compared the star count of each parent in relation
to their children, and found that only 9 parents (2.3% of
our sample) have fewer stars than their children, with 11
repositories at depth = 1 and 3 repositories at depth = 2
having more stars than their parents.

76% of the families follow the same distribution of stars,
where parent repositories have received the majority of
stars, and children rarely surpass their parents’ star
counts.

RQ2) How much communication takes place among reposito-
ries within a family?

Motivation. Table II is a complete list of metrics calculated
for our model, with most calculated relative to each repository,
family, and outside the family. We are interested in explor-
ing where the communication is coming from, and in what
quantities, to determine which modes of communication are
used more or less by users from the same repository, from the
family, and from outside the family.

Approach. We calculated our metrics using the data found
in the GHTorrent data set, and compared the volume of each
metric relative to the repository, family, and outside the family
to determine more or less frequent modes of communication.
Findings. Figure 3 shows the count of all metrics in our
sample. For example, the PRs metric in figure 3 shows that
PRs occur more often with the family than with the repository.
Our findings as they relate to software families are as follows:

1) We compared the number of PRs with the family, and
within the repository from our sample of 65,756 PRs.
Of these PRs, 40.4% (26,590) were with branches, and
59.6% (39,166) PRs were with family members.

2) There are 24,998 unique users in our sample. Out of all
users, 11,499 have contributed to multiple repositories in
the same family.

3) From our sample consisting of 59,023 issues, approxi-
mately 29.6% of issues are reported from users in the
repository, 9.7% from users in the family, and 60.1% from
users outside the family.

The majority of PRs happen within the family, and many
users contribute to repositories across the same software
family. The majority of issues are opened by users outside
the family, with the fewest opened by users from the family.
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Fig. 3: Metric counts separated by repository, family, and outside the family.
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While most communications are from users in the same
repository or from outside the family, Figure 3 shows there
is still a significant amount of communication between repos-
itories in the same family. We also made more interesting
observations related to communication as follows:

1) Few repositories in our sample use GitHub’s issue tracker.
Of our sample, only 2,595 repositories use GitHub’s issue
tracker. This observation aligns with existing research [6].
Interestingly, each parent of our 385 families has at least
one registered issue.

2) We observe more discussion in issues than in PRs. Our
sample contains 59,023 issues with 215,489 comments,
compared to 65,756 PRs with 139,501 PR comments,
averaging to 3.65 and 2.12 comments respectively.

3) Our sample only contains 196 mentions from PRs,
compared with 38,182 mentions within our sample’s
issues. While our sample has more comments from issues
(215,489) compared with PRs (139,501), the proportion
of mentions between the two are are very different.
These results support previous research, which shows that

TABLE III: Representative and correlated metrics.

Representative Metric [ Correlated Metrics

users_also_in_family
pr_mentioned_repo
pr_mentioned_family
pr_mentioned_outside
pr_family_code_comments

users_repo
pr_mentioned_unique_repo
pr_mentioned_unique_family
pr_mentioned_unique_outside
pr_family_code_pos
pr_repo_code_pos
pr_repo_code_neg
issue_mentioned_repo
issue_mentioned_unique_repo
issue_subscribed_repo
issue_family
issue_comments_family
issue_family_pos
issue_family_neg
issue_mentioned_family
issue_mentioned_unique_family
issue_subscribed_family
issue_comments_outside
issue_outside_pos
issue_outside_neg
issue_closed_outside
issue_mentioned_outside
issue_mentioned_unique_outside
issue_subscribed_outside

pr_repo_code_comments

issue_outside

mentions are uncommon among PRs [27]. forks active_forks
4) Very few users unsubscribe from issues. From our sample, 155“‘3—“1056‘1—“:?0
. " 1ssue_comments_repo
there are 65,396 instances of users subscribing to events, issue_repo issue referenced reI;o

with only 103 instances of users unsubscribing.

RQ3) How does communication, in the context of a family,
relate to stars?

Motivation. As shown in RQ2, there is an abundance of
interactions within a software family. We investigated whether
interactions between family repositories are related to stars.
We compared these familial interactions with interactions in
the repository itself, with users outside of the family, and their
relationship to repository star count.

Approach. We implemented a linear regression model using
a subset of metrics from Table II, with the number of stars in
each repository as the response variable [25]. We prepared
our model by conducting a hierarchical cluster analysis to
determine correlated metrics with Spearman’s |p| > 0.7 [28],
[29]. Including correlated variables in linear regression models
negatively affects the stability of linear models, and hides the
impact of each metric on the response variable [30]. Table

issue_repo_pos
issue_repo_neg

IIT shows all correlated metrics that were removed from our
model (right column). Each representative metric (left column)
was included in our model, and chosen based on its simplicity
to calculate and interpret. Lastly, we normalized the predictor
variables to properly compare coefficients [29].

Findings. Table IV shows the results of our linear regression
analysis, with R? = 0.4183. Our findings as they relate to
software families are as follows:

1) We find that the depth of a repository in a family has
a significant negative relationship with stars, as observed
in RQ1.

2) Interestingly, we also find that the number of users
who have contributed to other repositories in the same
family has a positive relationship with stars. Previous



TABLE IV: Results from linear regression model.

The Metric column refers to each metric included in our linear regression
model. The Estimate column is the intercept, Pr(>F) is the p—value, and

Rel. is the relationship between the metric and star count.

Metric | Estimate [ PrCF) | Rel
Non-communicative - - -
forks 14050.658 < 2e-16 ¥¥x | A
depth 277.189 | 2.40e-14 ek | N
age 12.583 | 0.375914

Repository - - -
issue_repo 4725.571 < 2e-16 *¥x | A
issues_unsubscribed_repo 5693.965 < 2e-16 EFEE LN
pr_mentioned_repo 5223.013 5.95e-15 Fk N
issues_assigned_repo 3460.600 34le-14  ##x | N
followers_repo 1539.621 | 2.24e-12  *kk | N\
pr_repo_code_comments 1685.611 1.22e-08  *** Va
pr_repo_neg 231.079 | 0.008786  ** AV
pr_repo_comments 4086.671 | 0.008076  ** N
pr_repo 2386.168 | 0.026081  * AWV
pr_repo_pos 40.304 | 0.613545
issues_reopened_repo 1399.081 | 0.238119

Family - - -
users_also_in_family 1971.051 < 2e-16 *¥x | A
pr_mentioned_family 5184.101 < 2e-16 F¥E | A
issues_unsubscribed_family 6435.359 < 2e-16 FEE A
issues_closed_family 7114.712 < 2e-16 0 FEE LN
issues_reopened_family 5383.633 < 2e-16 F¥E | A
issues_assigned_family 2335.077 < 2e-16  FE* Va
issues_referenced_family 2089.421 3.11e-07  ##% | N
pr_family_code_comments 1219.366 | 0.000627 = | N\
pr_family 849.382 | 0.003637  ** Va
pr_family_comments 747.066 | 0.008731  ** AWV
followers_family 130.352 | 0.018029  * N
pr_family_pos 27.776 | 0.228881
pr_family_code_neg 11.466 | 0.776198
pr_family_neg 3.041 | 0.899862

Outside - - -
followers_outside 2441.401 < 2e-16 *¥x | A
issues_reopened_outside 9066.449 < 2e-16 F¥E |
issue_outside 6506.352 5.13e-09  *** Va
issues_unsubscribed_outside 1703.198 7.90e-08  wEE | A
pr_mentioned_outside 1056.548 4.88e-06  FEE | N\
issues_referenced_outside 1380.460 | 0.013112  * N\
issues_assigned_outside 170.946 | 0.751762

3)

4)

research has shown that the number of contributors
in a single repository (users_repo) is correlated with
stars [5]. In our study, users_repo is correlated with
the number of users who have also contributed to
other repositories (users_also_in_family). Including
users_also_in_family in our model resulted in a better
goodness-of-fit.

We observed that the total number of followers of users
belonging to the repository and belonging to the family
has a negative relationship with stars. However, we find
that repositories with members who have more followers
from outside the repository have a significant positive
relationship with stars. This may support previous studies
which show that followers are likely to star new reposi-
tories after a user they are following contributes to that
repository [7], [31].

PRs can be done via forking and branching. We found
that more PRs with family members (pr_family) has
a statistically significant relationship with stars, whereas

repositories that rely more on PRs from inside the repos-
itory (pr_repo) has a negative relationship with stars.
This may be due to more engagement with different users
outside the repository, but future studies are required to
see if this is the case.

The number of users who contribute to other repositories
in the same family share a significant positive relationship
with stars. The number of followers from outside the family
has a significant positive relationship with stars, whereas
the number of followers from inside the repository and
family is negatively associated with stars. The number of
PRs with the family has a statistically significant positive
relationship with stars, whereas PRs from inside the
repository has a negative relationship with stars.

We also made more observations related to stars as follows:

1y

2)

3)

4)

5)

We find that age does not have statistically significant
relationship with stars, which corroborates previous find-
ings [9]. This is likely because different repositories gain
stars at different rates [21], [32].

We also find that the number of forks also has a signifi-
cant positive relationship with the number of stars. This
is in line with the findings of other research results [9].
We find that PR sentiment, from within the repository
and family, does not share a statistically significant rela-
tionship with stars, while the average negative sentiment
of PRs within the repository (pr_repo_neg) and the
number of PRs from within the repository (pr_repo) has
a negative relationship with star count. Therefore, we
cannot with certainty conclude that the average negative
sentiment of PRs within the repository has a statistically
significant relationship with stars.

We find that the number of issues, no matter if they
are opened from users inside the repository, the family,
and outside the family, has a significant relationship with
stars. Previous research has shown that the number of
reported issues is strongly correlated with the number of
forks and watchers, which validates these results [6].
We find that 5 issue events (issue_unsubscribed_-
outside, issue_reopened_outside, issue_assigned_-
family, issue_reopened_family, and issue_-
unsubscribed_family) have a positive relationship with
stars, and 5 issue events (issue_referenced_outside,
issue_referenced_family, issue_closed_family,
issue_assigned_repo, and issue_unsubscribed_repo)
have a negative relationship with stars.

To determine the importance of families within the context

of individual repository star count, we performed relative im-
portance testing with our metrics to determine which metrics
had the most effect on our model’s fit. We grouped each metric
into four categories depending on their characteristics:

Non-communicative. Metrics relating to the repository
itself (i.e. age, depth and forks).
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Fig. 4: Relative importance (pmvd) score.

e Repository. Metrics involving communication with only
users from the same repository.

e Family. Metrics involving communication with users
from the same repository’s family.

e Outside. Metrics involving communication with users
from outside the repository’s family.

Specific groupings of each metric can be found in Table IV.
We compared each grouping using proportional marginal vari-
ance decomposition (pmvd) via the relaimpo package [33].

Figure 4 shows the contribution of each grouping to the fit
of our model. Our results show that our family communication
metrics contributed the most to the fit of our model at 34.1%,
followed by the repository’s non-communicative metrics at
30.3%, outside communication metrics at 22.7%, and lastly
repository communication metrics at 12.8%.

Interactions involving family members contribute the most
to repository star count.

RQ4) What are the topics within the communications?

Motivation. In RQ3, we observed that regardless of who
reports an issue, the number of issues in relation to stars is
significant. Due to the significance of these findings, we de-
termined the topics within these issues to investigate whether
certain topics were discussed more often inside the repository,
the family, or outside the family. We also observed that PRs
within a repository have a negative relationship with stars,
and PRs with family members have a positive relationship
with stars. We also investigated topics for both familial and
repository PRs to see how topics within these PRs differ.

Approach. We performed structural topic modeling on com-
ments from 57,097 issues and 66,504 PRs using the stm
and tidytext packages [34], [35]. Each comment was
pre-processed to remove stop words, numbers, emails, and
URLSs. The number of topics was calculated using Deveaud et
al’s method by maximizing information divergence between
different topics via the 1datuning R package [36], [37].
We calculated 20 topics for our issue set, and 14 topics
for our PR set. We used stm, the R package for structural
topic models to determine the topics of our issues [34]. The
configuration for our model was calculated automatically via
a moment-based estimator [38]. 55,667 issues and 62,952
PRs were successfully classified, with 1,430 issues and 3,552
PRs were dropped as they no longer contained any text

after pre-processing. We then manually named and described
each topic by looking at the top 5 word probabilities and
a random sample of 10 issues and PRs. The topic names
and descriptions were manually assigned then shared with
a graduate student in computer science (with industrial and
GitHub experience). After discussion and iteration, a final set
of names and descriptions were agreed upon.

Findings. Table V shows the name, description, and top 5
words for each topic calculated from our issues. We know
from RQ2 that approximately 29.6% of issues are reported
from users in the repository, 9.7% from users in the family,
and 60.1% from users outside the family. Figure 5 shows the
breakdown of each topic.

There are several topics that are application specific. T}
NextCloud Config, T1yp Nextcloud, and Tig Ruby are
application specific, with 1, 4, and 35 families out of 354
families discussing issues with these topics with a minimum
of 50% certainty. It is interesting to note that issues with these
topics are opened by users who are mainly from outside the
repository (89.4% for 11, 75.6% for T4y, and 73.3% for Ti¢ ),
indicating that for these applications, issues are driven mainly
from outside the family.

However, there are certain issue topics discussed by many
families. For example, Ts Features is discussed by 310
families out of 354 families with a minimum of 50% certainty,
and are more often reported by users from the same repository
at 45.7%, followed by 42.4% of users outside of the family. 75
Styling is also discussed among many families, with 172 of
our 354 families discussing this topic with a minimum of 50%
certainty. The distribution of users reporting issues discussing
these topics aligns closely with the findings from RQ2 with
30.1% issues reported from users within the repository, 10.4%
issues reported from users from the family, and 59.5% issues
reported from users outside the family.

There are also certain topics reported more often than aver-
age by users from the family. Issues discussing 7T}g Builds,
are reported more often than average by users in the same
family at 18.5%. Issues discussing 713 Html and Latex
have been reported by users of the same family at 14.7%.
Lastly, Ty Logs is also discussed more often than average in
issues opened by users in the family at 13.1%.

Table VI shows the name, description, and top 5 words for
each topic calculated from our PRs. We know from RQ2 that
approximately 40.4% of PRs are with branches, and 59.6%
of PRs are with the family. Figure 6 shows the breakdown
of each PR topic depending if they came from users in the
repository, or users from the family.

Topics P, NextCloud Config., P3 Styling, Py
Vr and HAS, Ps Features, and P;; Node are discussed
mostly from PRs with the family. These topics are also
extremely application specific, with only 23, 28, 17, 26, and 20
families out of 384 families having a PR identified with these
topics with a minimum of 50% certainty. Our topic modeling
also grouped PRs based on PR enhancement applications.
Ps Methods, Ps Features, Ps Presto, Py Logs, and
P> Build and Installation are all PR topics using



TABLE V: Descriptions for each issue topic.

Topic | Topic Name

Top Word Probabilities

Brief Description

Server configuration issues, mainly within the
Nextcloud application.

User interface issues, mainly with React navigation.
General user interface styling.

Errors mainly with LibreVR and Domoticz.

Method level compilation, type, and argument errors.
Suggestions or feature requests.

Hypertext preprocessor and database issues, mainly

Ty NextCloud Config. nextcloud, details, summary, server, removed
T React Ul react, screen, navigation, issue, native

T3 Styling page, file, issue, version, app

Ty VR and HAS domoticz, revive, error, occulus, game

Ts Methods function, type, string, return, float

Ts Features time, issue, code, add, support

T PHP and DB php, wallabag, table, database, symfony

Ty Presto error, presto, java, jar, null

Ty Logs module, cljs, shadow, icinga, modules

Tio Nextcloud Sharing www, lib, var, nextcloud, oc

Th1 Node npm, node, node_modules, error, js

T2 Build and Installation version, file, install, docker, run

Tis Html and Latex class, latexml, html, div, text

Tha Connectivity info, debug, error, src, connection

Tis Notifications/BigchainDB email, notifications, reply, bigchaindb, view
Tie Ruby lib, gems, logstash, ruby, usr

Ti7 Plugins plugin, node, jstree, function, android

Tis Build build, src, include, usr, error

Tig Python python, line, file, lib, packages

Tso HTTP server, user, client, error, http

within the Wallabag application.

Java issues, mainly within the Presto application.
Issues including log messages.

Errors from Nextcloud’s sharing functionality.
Issues from Node.js and its package manager npm.
Issues with building and installing applications,
generally from the command line.

Display issues with html and latex elements.
Issues connecting to a service.

Issues using GitHub’s notification service, and
BigdbChainDB issues.

Issues with Ruby and ruby gems.

Issues with plugins, mainly with JSTree plugin.
Issues with building applications.

Issues with applications using Python.
Connectivity, requests, and routing issues.

% of Issues
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Fig. 5: Breakdown of each topic based on user affiliation.

bots or applications which set a common format or precedent
for PRs, with P and Py mostly coming from within the
repository. For example, most PRs with topic P Coveralls
use the Coveralls application, which replies to the PR with the
test code coverage that would result from accepting the PR.
Py is not application specific; we see from Figure 3 that most
mentions occur within repositories, which may explain why
Py also occurs mostly within the repository.

P, Additions, Pjp Server Time & Logs, and Pi3
Builds are all topics discussed across many repositories
in our sample, with 248, 220, and 235 families out of 384
families discussing these topics, respectively. Interestingly,
they all follow similar distributions to the number of PR topics
within the repository and with the family, suggesting that there
is little difference between discussions from PRs within a
repository and PRs with the family.

Users report issues discussing different topics depending
on whether they are from the repository, family, or outside
the family. Users discuss similar topics in PRs from within
the repository and from the family.

IV. RELATED WORK

There are several studies showing the relationship between
GitHub communication metrics and star count. Bissyand et al.
show that there is a correlation between the number of reported
issues and the number of watchers and forks in a repository
[6]. Gousios et al. show that there is some correlation between
the number of PRs a repository receives and its number of
stars [39]. Borges et al. show there is a low correlation between
stars and the number of commits, and moderate correlation
between stars and the number of contributors and forks [5].
Blincoe et al. show that when popular users star, fork, con-
tribute to or create a new repository, many of their followers
will also star that repository [7]. Guzman et al. find a weak
positive correlation between the average of positive commit
comments belonging to a repository and its stars [40]. We
performed similar analyses by finding relationships between
communication metrics and stars.

There is also research on the importance of social behaviors
in GitHub. Dabbish et al. discuss the impact of social infer-
ences on work coordination and learning technical skills [41].
Zhang et al. show the benefits of @mentions to PR processing
by engaging more users [27]. Tsay et al. identify several



TABLE VI: Descriptions for each PR topic.

Topic | Topic Name | Top Word Probabilities | Brief Description
P BloomDesktop src, bloomdesktop, bloombooks, file, reviews PRs for the BloomDesktop application.
Py Additions add, type, method, function, code Adding new functionality.
P3 Reviewable files, reviewable, reviewed, img, alt PRs using Reviewable, a code review application.
Py YCMD yemd, vallowic, reviews, file, line, completers | PRs surrounding YCMD, a code-completion server.
Ps Google Bot and PRs pull, branch, request, git, version Google bot, or PRs talking about GitHub’s functionally
such as PRs, forking, merging, and branching.
Ps Codecov src, diff, pr, el, tree PRs using Codecov.io, a code-coverage application.
Py React CI and Benchmarking | php, channel, mb, react, ms React-navigation-ci and speed benchmarking.
Py Coveralls coverage, status, badge, pulling, code PRs using Coveralls, a testing code coverage application.
Py Mentionbot/Snyk-bot user, files, pr, request, app PRs using Mentionbot and Snyk-bot.
Pio Server Time & Logs code, time, patch, test, server PRs surrounding time (delays, timeouts, rates etc.) and
logging, mainly with servers.
P11 Pentaho pentaho, java, src, org, osgi PRs with Pentaho’s Open Source OSGI bundles.
Pi2 Tables fix, test, update, tests, add PRs that use a checklist, table, or common format.
P13 Builds file, build, pr, docker, windows PRs mentioning builds.
P14 Python python, pr, error, it, gt PRs discussing updating Python dependencies.
- . or negative score were excluded from our analysis, which
O Famil m Reposito .
y P oy may have further changed the results from our sentiment
, 100 scores. Furthermore, despite being the most accurate sentiment
E 28 analysis tool for software engineering texts, SentiStrength-SE
S 40 is not 100% accurate, and may have brought a degree of error
e 28 into our calculations [16].

Py Py P3 Py Ps P P; Ps Py Pyg Pyy P1a P13 Py
Topic
Fig. 6: Breakdown of each topic based on PR type.

factors that influence PR acceptance such as the number of
comments, and social connections between the contributor and
project manager [42]. Qiu et al. study the role of social capital
on continued repository contribution [43].

Lastly, there is also research studying mainline variants
and its forked variants in the context of Android apps on
the Google Play store [44]. While this paper proposes an
app family, a collection of applications on the Google Play
store comprised of associated parents and children on GitHub,
a software family, as defined in this paper, broadens the
definition to fit the context of software development.

Our study combines the analyses of GitHub stars with the
importance of studying communication on GitHub by separat-
ing communication metrics in related sets of repositories. The
fact that we are performing these analyses by breaking down
communication metrics through the lens of a software family
distinguishes our work from previous studies.

V. THREATS TO VALIDITY

We mined comments from the GitHub API and matched
them to their corresponding comment ID in GHTorrent, as
described in Section II. However, these comments could have
been edited between the time of the database snapshot (March
Ist, 2019) and the time of mining. This may have affected our
sentiment analysis, as the comment could have been edited.

SentiStrength-SE is limited to English comments only.
Comments in a different language that may have had a positive

We manually named and described each topic by looking at
the top 5 word probabilities and a random sample of 10 issues
and PRs. These names and descriptions were then verified
against an independent source until agreement was reached.
While this process was useful for defining our topics, it is
ultimately subjective, and open for interpretation.

Lastly, we treated each observation (repository in our sam-
ple) as independent, which is a required assumption for linear
regression models. However, this study has shown that families
have a large influence on repository star count. Future studies
should keep this in mind when analyzing GitHub repositories.

A replication package can be found in our GitHub reposi-
tory [45].

VI. CONCLUSION

In this paper, we defined the concept of a software family
to explore how interactions take place within and between
repositories. We found that interactions from users in the same
software family share a significant relationship with repository
stars. We also found that issue discussions vary depending
on who reported the issue relative to the family. Our results
demonstrate that a software family is an important concept for
investigating user contributions and repository stars.

For our future work, we plan to trace the evolution of
software families with stars over time. We also plan on looking
at developer retention and social capital among developers as
they relate to families [43]. Lastly, we will investigate how
different communication topics may relate to repository stars.
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