
Exploring Trends and Practices of Forks in Open-Source
Software Repositories

Mahsa Hadian
Polytechnique Montreal
Montreal, QC, Canada

mahsa.hadian@polymtl.ca

Soude Ghari
Polytechnique Montreal
Montreal, QC, Canada
soude.ghari@polymtl.ca

Marios Fokaefs∗

Polytechnique Montreal
Montreal, QC, Canada

marios.fokaefs@polymtl.ca

Scott Brisson
University of Toronto
Toronto, ON, Canada

scott.brisson@mail.utoronto.ca

Ehsan Noei
University of Toronto
Toronto, ON, Canada
e.noei@utoronto.ca

Kelly Lyons
University of Toronto
Toronto, ON, Canada
kelly.lyons@utoronto.ca

Bram Adams
Queen’s University

Kingston, ON, Canada
bram.adams@queensu.ca

Shurui Zhou
University of Toronto
Toronto, ON, Canada
shuruiz@ece.utoronto.ca

ABSTRACT

Forking a software repository is a popular and recommended
practice among developers. A fork is a copy of the original
repository that can evolve independently from the parent
repository, allowing developers to experiment with a code
base or test new features without the danger of affecting the
original project. A fork can result in changes that are pushed
back to the original project or even evolve into an independent
project. Some projects tend to be forked extensively to the
point where their forks are also forked and form families of
projects. In this work, we explore the motivation, the practices
and the culture of forking open-source software repositories.
In particular, we study how forks evolve compared to the
parent repository, how they are related to pull requests, how
they contribute back to the parent, and how dependencies,
in terms of libraries or external modules defined in a build
script, are shared or differ within project families. Finally, we
relate our findings with how communication and collaboration
occurs within software families.

CCS CONCEPTS

• Software and its engineering → Open source model;
Software design engineering ; Software libraries and repos-
itories; Software development process management.

∗Currently, Pr Fokaefs is a faculty member at York University, Toronto,
Canada

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON’22, November 15–17, 2022, Toronto, Canada

© 2022 Copyright held by the owner/author(s).

KEYWORDS

mining software repositories, open source software, forks, soft-
ware development processes, version control, dependencies,
collaborative software development

ACM Reference Format:
Mahsa Hadian, Soude Ghari, Marios Fokaefs, Scott Brisson, Ehsan
Noei, Kelly Lyons, Bram Adams, and Shurui Zhou. 2022. Ex-

ploring Trends and Practices of Forks in Open-Source Software
Repositories. In Proceedings of CASCON’22. ACM, New York,
NY, USA, 11 pages.

1 INTRODUCTION

Forking is an open source practice that, until the early 2000s,
was interpreted as a negative phenomenon: “There is strong
social pressure against forking projects. It does not happen
except under plea of dire necessity, with much public self-
justification, and with a renaming” [12]. Typically, a subset
of a given community would disagree about the development
plan, progress or team composition of a given project, copy
(the current state of) the code base elsewhere and continue
separately from the initial community. Notable examples of
such “hard” forks [20] are the forking of XEmacs from the
main GNU Emacs in 1991 (both communities never merged
again), or the EGCS fork from GCC in 1997 (successfully
merged again into GCC 2.95). Today, the meaning of fork has
softened slightly, thanks to the popularity of GitHub, and
is mostly interpreted as “social” forking [20], which simply
makes a copy of a (parent) repository in order to make modi-
fications (new features, bug fixes or pure experimentation) to
the code base that can then be proposed back to the parent
(through a “pull request”).

The notion of social forks goes much deeper than this. Ger-
man et al. [6] note that modern forks basically are distributed
branches of a code base that together form an ecosystem
(“super-repository”) around their parent, i.e., forks maintain
traceability to their parent. Brisson et al. [2] went a step
further, identifying the crucial role of social relationships

CASCON’22, November 15–17, 2022, Toronto, Canada Hadian, et al.

between the contributors of a parent repository, its forks, and
the forks’ own forks to the extent that these forks essentially
form a “family” of projects communicating directly through
pull requests (PRs), issues, and mentions. Like any family,
there might be small cliques that interact more closely than
others, or some family members might break off from the
family altogether.

It is not clear whether the motivational differences be-
tween hard and social forks are also reflected in different
development practices. At a minimum, we are interested in
understanding the degree of activity in both types of forks,
and how long forks survive in either case. Do hard forks really
have a much more difficult time succeeding, and, conversely,
do social forks lead to substantial contributions? To what
extent do such contributions tackle more invasive changes,
such as updates of existing third party dependencies or the
addition of new dependencies, and how receptive is the parent
repository to such changes? Finally, does parent-fork commu-
nication (e.g., issues and comments) help determine the type
(hard/social) and fate (success/failure) of forks?

To better understand the practices followed by social and
hard forks, this paper presents an empirical study that an-
alyzes 75 GitHub families of Java projects that include a
total of 3,405 repositories (parents and forks). We selected
these projects using criteria concerning their development
activity (age in days, number of commits), the intensity of the
communication (size of team, number of issues), the presence
of build files (to specify dependencies) and others. We then
set out to answer the following research question]

RQ1 How do forks evolve alongside their parents?
RQ2 How are dependencies maintained and evolved between

forks and their parents?
RQ3 How does communication between repositories, also

within the context of families, relate to repository evo-
lution?

The rest of the paper is organised as follows. Section 2
describes the data collection process and how the study was
organised. In Section 3, we present and discuss the results of
our study. Section 4 provides an overview of related literature.
Finally, Section 5 concludes this work.

2 STUDY SETUP

2.1 Data Collection - Repositories

GitHub provides accessibility to its internal data storage
through an API1. This API provides access to a rich collec-
tion of information about developers and repositories, and
also provides valuable opportunities to understand forking
behavior. As an extra check, we also used the GHTorrent
data dump as a complementary data source for the same
dataset [7]. In practice, the official API corresponds to the
live current picture of GitHub, while the GHTorrent data
corresponds to a static, more cumulative picture of the same

1https://developer.github.com/v3/

data. In addition, GHTorrent is more complete with respect
to communication and collaboration data. We aimed for the
studied projects to exist in both sources to have as complete
a dataset as possible. Zhou et al. [20] provide a dataset of
15,306 hard forks identified in GHTorrent’s data dump from
June 2019. Starting from the same data dump, we performed
the following 10 steps to curate our dataset.

Identify and retrieve hard forks: We cross-referenced the
15,306 hard forks identified in the replication package of [20]
with our GHTorrent data dump. Because the unique GHTor-
rent repository IDs were not provided, we cross-referenced
the repository name and owner name in order to identify the
hard forks in our dataset. Of 15,306 hard forks, 15,260 were
identified and retained.

Identify parents from hard forks: The parents are needed
to identify the entire software family for each repository.
We recursively iterated through the data dump to find the
parent (baseline repository) for each hard fork identified in
the previous step. Five (5) hard forks were removed because
the parents could not be identified, six (6) hard forks were
removed because they were not forked using the GitHub
forking mechanism (i.e., the fork button), but their code base
was manually copied in a new repository, so their parents
were not identifiable on GitHub which meant we could not
link the evolution histories between parents and forks. Finally,
one hard fork was removed because GHTorrent flagged the
project as deleted, resulting in 12,985 parents with 15,248
hard forks.

Remove non-Java repositories: We opted to focus on Java
projects since it is one of the most popular software languages,
as identified by the TIOBE index [16], especially in the open
source domain, and it possesses important properties we need
for our analysis, namely build files for dependencies. Focusing
on a single language can also help remove any variation in
findings caused by this factor. Thus, considering only Java
projects (repositories with language set to Java), we kept
1,038 parents with 1,201 hard forks.

Construct software families: Using the 1,038 parents that
resulted from the previous step, we recursively iterated through
each parent’s forks and the forks of their forks, as identified
in the GHTorrent data dump, resulting in 1,038 families com-
posed of 367,353 repositories with 1,201 hard forks. During
this process, we also kept track of which repositories were
forks of the hard forks, resulting in 23,805 repositories within
the 367,353 repositories that are forks of hard forks.

Remove pure clones: We define pure clones as forks that
have been forked from a parent on GitHub, but contain no
other change (in terms of commits). For the purpose of our
study we removed pure clones among the children found
in the previous step. This eliminated 289,501 repositories,
resulting in 1,038 families composed of 77,852 repositories.

Remove personal repositories: Many repositories on GitHub
are personal repositories, meaning they only have a single
contributor. Since we are interested in the collaborative as-
pect of software development, we removed such repositories,
resulting in 970 families composed of 15,725 repositories.

Exploring Trends and Practices of Forks in Open-Source Software Repositories CASCON’22, November 15–17, 2022, Toronto, Canada

Remove inaccessible fork repositories: As we mentioned pre-
viously, parent repositories were identified using the GitHub
API, but their children (i.e., forks) were gathered and eval-
uated using the GHTorrent dump, which contains more cu-
mulative data and helped us to further filter repositories
with low activity. As an extra check, we used the URLs in
GHTorrent to call the GitHub API and confirm that our
dataset contains “live” repositories, meaning not deleted or
archived. As a result, we removed children from our dataset
that were not accessible via the GitHub API. During this
step, we also removed families whose hard forks may have
been removed, bringing our dataset to 794 families composed
of 11,162 repositories.

Remove repositories with no issues or PRs: Since we are
interested in studying communication among repositories, we
included a repository only if it used the collaborative tools
on GitHub (i.e., issues and pull requests), resulting in 752
families composed of 7,976 repositories.

Remove non-software repositories with no build files: Many
repositories on GitHub are not used for software develop-
ment. These can include personal repositories, repositories
that correspond to web sites, or even documentation and
manuscript repositories [9]. We distinguished these reposito-
ries from actual software repositories using the classification
system similar to [9]. We manually inspected each repository
and categorized each one as “software” or “other”. Reposi-
tories categorized as “software” remained in our sample. In
addition, given that our study is concerned with aspects of
collaboration and communication in software development,
where one analyzes artifacts in natural language, we also re-
moved repositories whose dominant language was not English.
This was done in tandem with identifying software reposito-
ries by inspecting the majority language used in the commit
messages, pull requests, and issues. From these projects, we
considered only those that had a build file, from which we
could extract dependencies. The build files we considered
were Gradle2 and Maven3, which are popular among Java
projects. Thus, considering only English Java software repos-
itories that have a build script, we kept 83 families composed
of 3,857 repositories.

Remove small families: We removed families composed
of fewer than 10 repositories (parent and forks) in order to
reduce the risk of over-fitting [15]. We also removed families
whose hard fork was removed during the previous filtration
step, any duplicate repositories, and repositories that could
not be accessed through GitHub’s API. This resulted in a
final dataset of 75 families composed of 3,405 repositories
with 176 hard forks, with each family composed of at least
10 repositories with at least one hard fork.

2.2 Data Collection - Metrics

After finalizing the dataset with respect to parent reposito-
ries and their children, we gathered the following metrics
necessary for answering our research questions (see Table 1):

2https://gradle.org/
3https://maven.apache.org/

Development Metrics: For RQ1, we are interested in study-
ing the activity that takes place in forks. For that reason,
we gathered data for all commits (including the commit
messages) for all repositories. We also registered the date
of creation for all forks and we calculated the age of each
repository as the number of days from the creation day until
2019-06-014, which is the last date we considered. We also
gathered data about the PRs (pull requests) for each reposi-
tory. We only consider closed PRs. For Github, a closed PR is
either a merged PR or a rejected PR. We do not distinguish
between the two, because either of them show the intention
of the fork to contribute back to the parent repository, which
brings them closer to the “social” type of a fork. We did not
consider open PRs because their status is unclear and we
could not be sure about their progress (a PR can be retired
by the submitter).

Dependencies: For RQ2, we are interested in how de-
pendencies are maintained and evolve between forks and
their parents. As described in Section 2.1, repositories in our
dataset either use a Gradle (build.gradle) or Maven (pom.xml)
build file that describes the project’s dependencies and other
resources needed by the project. In general, a Maven depen-
dency is defined as a triplet of a groupId, which is the unique
identifier of the general project that the library belongs to,
an artifactId, which is the id of the specific library and a
version. Normally, the version corresponds to a number or
a version ID, but in some cases a variable may be used, which
instructs Maven to download the latest version available in
the project’s repository.

Gradle is not always consistent in structure between projects
because it provides different notations for specifying depen-
dencies including a string notation and a map notation. There-
fore, a combination of automatic parsing and manual inspec-
tion was used to extract dependencies from dependencies

and plugins blocks of build.gradle files. In addition, the
Gradle build file may include the declaration of dependencies
on local binaries or file dependencies (i.e., a .jar file usually
specified within a lib folder). For this case, we extracted the
jar files with the corresponding full names. We used a python
script to parse and identify the artifactId, groupId, and
version declaration described within the dependencies and
plugins blocks of the build file. The parsing resulted in a
set of triplets that specified the library, the module, and the
version of the module, similarly to Maven dependencies.

Communication Metrics: Communication metrics capture
the social activity in a repository, including pull requests,
comments on PRs, issues, users and followers among others
that we are interested in analyzing for RQ3. Each metric was
mined or calculated from GHTorrent, was measured relative
to each repository, and can be identified via its suffix:

• repo: Metrics measured amongst users within the same
repository. For example, issue repo is the number of
issues reported in the repository by users who have
write access to that repository.

4This date was selected to remove bias of very “young” repositories of
less than a year of age

CASCON’22, November 15–17, 2022, Toronto, Canada Hadian, et al.

• family: Metrics measured amongst users in the same
family. For example, issue family is the number of
reported issues by users exclusively with write access
to another repository in the same family.

• outside: Metrics measured from users not in the family.
For example, issue outside of reported issues by users
with no write access to any repository in the same
family.

3 RESULTS AND DISCUSSION

The classification of forks as social or hard within a family
is the first step towards answering the research questions
we posed in the beginning. Zhou et al. [20] propose a set
of heuristics to differentiate between hard and social forks.
These heuristics include the age of the repository, popularity
(as measured by the number of stars in GitHub), number of
merged or unmerged pull requests, whether the forks have re-
ceived external pull requests, whether the forks have changed
the name of the repositories, among others. Additionally, they
interviewed several hard fork owners and found that many
owners did not intend to create a hard fork and branch out
the development, but after certain events or inconveniences
(e.g., lack of responses from the upstream, disagreement be-
tween fork owner and upstream maintainers), these forks
gradually evolved from social forks to hard forks and stopped
interacting with the original projects.

In our work, we focus only on code contribution metrics,
such as number of commits and number of merged commits by
pull requests, to differentiate between hard and social forks,
under the assumption that these represent a less subjective
way to capture the nature of a fork and potentially the
developers’ intent. According to our definition, a social fork
initiates changes destined for the parent repository. These
changes are represented by commits in the fork that are then
proposed to the parent through pull requests. However, as
people have different expectations of hard forks (which form
a new community) and social forks (which are still part of
the original community), it is necessary to define a threshold
on the contribution of forks back to the parent as the portion
of fork commits included in pull requests to the parent, and
better identify these two types of fork.

Zhou et al. [20] defined 30% as the threshold between so-
cial forks and hard forks, yet without rigorous justification of
this decision. Therefore, in this work, we investigate different
merge thresholds and examine the impact of choosing a fixed
threshold between hard and social forks in these kind of stud-
ies. This first analysis aims at investigating the distribution
of social and hard forks in our data set and also how this
distribution changes when we consider a different threshold
for the ratio of merged pull requests. The objective is not to
propose a unique or evaluated method to classify forks. In
order to answer our research questions, we need to make this
classification and we present how the process of defining a
classification (i.e., selecting the merge threshold) can affect
the outcomes of a similar study.

In order to calculate the proportion of merged unique com-
mits from a fork to its parent, we define a unique commit as
a commit that has originated only from the fork. In practice,
when a fork is created from a parent repository, all the com-
mits from the parent are automatically copied in the fork’s
history as well. Therefore, we compared the commits, based
on their SHA IDs5 between a fork and its respective parent
to identify the commits that are unique only in the fork.
However, commits that have been merged from the fork to
the parent through a pull request are present in both the fork
and the parent, hence, along with purely unique commits,
we also add merged commits in this count as long as they
originate from the particular fork (as mentioned in the cor-
responding pull request metadata). Finally, the percentage
of merged commits is calculated as the ratio of merged over
total unique commits in the fork.

Based on this ratio, we considered a number of different
thresholds to examine the impact of choosing a fixed thresh-
old in the analyses between social and hard forks. More
specifically, we identify a fork as social if at least 1, 25%,
50%, 75% or all of its unique commits are merged back to
its parent. For the rest of this work, we answer the various
research questions separately for each of these thresholds and
we discuss the results.

Table 2 shows the distribution of hard and social forks in
our dataset for the different thresholds, with the proportion
of hard forks increasing with threshold. In simple terms, as
the threshold becomes stricter, from requiring just 1 merged
commit to 100% merged commits, forks need to become much
more coupled to the parent repository to be considered a
social fork.

We also compared our classification with that by Zhou
et al. [20]. If we consider the latter as the ground truth,
the last three columns in Table 2 show the precision, recall,
and accuracy measures per threshold. The best precision is
achieved when we consider all commits being merged to the
parent. In reality, from the forks contained in the examined
dataset only 5% are identified as hard forks by Zhou et al.
[20].

3.1 RQ1: Fork Evolution Analysis

Motivation: By definition, forks constitute an independent
copy of the parent repository in the sense that changes hap-
pening in the forks are not automatically reflected back to
the parent. If this is the case for the entire lifetime of the
fork, then we can talk about hard forks. When changes are
attempted to be explicitly pushed to the parent (through a
pull request) in a more or less systematic manner (cf. the
threshold in the previous section), we can talk about social
forks. It is important to note that for our study the intention
of the fork developer is the important part and not necessarily
whether the contribution will be accepted or rejected.

5Commits were also compared based on commit message and author
name to account for rebasing issues, but no difference was found in
the studied dataset.

Exploring Trends and Practices of Forks in Open-Source Software Repositories CASCON’22, November 15–17, 2022, Toronto, Canada

Table 1: List of metrics mined from the repositories and considered in this study.

Category Metric Description

Age age Total age (in days).

Forks depth Total #forks away from the parent.
forks Total #forks.
forks family Total #forks that have participated in a PR or issue within the family.

Commits commit count Total #commits present in the repository.
unique commits Total # of unique commits, present in the fork, but not in the parent
commit author Username that made the commit
commit message Message of the commit

Dependencies dependencies List of unique dependencies.
jaccard Jaccard distance between the sets of dependencies of the fork and of

the parent

Users users repo Total #users with write access to the repository.
users also in family Total #users with write access to the repository and one other familial

repository.

Followers followers repo Total #followers of users repo coming from the same repository.
followers family Total #followers of users repo coming exclusively from the family.
followers outside Total #followers of users repo coming from outside the family.

Pull Requests (PRs) pr repo Total #PRs within the same repository (through branching)
pr family Total #PRs within the same family (through forking)

PR Comments pr repo comments Total #comments from pull request discussions in pr repo.
pr family comments Total #comments from pull request discussions in pr family.
pr repo code comments Total #comments from pull request commit discussions in pr repo.
pr family code comments Total #comments from pull request commit discussions in pr family.

PR Mentions pr mentioned repo Total #PR mentions of users in users repo.
pr mentioned family Total #PR mentions of users exclusively in the family.
pr mentioned outside Total #PR mentions of users outside the family.

Issues issue repo Total #issues reported by users in users repo.
issue family Total #issues reported by users exclusively in the family.
issue outside Total #issues reported by users outside the family.

Issue Comments issue comments repo Total #issue comments from issue repo.
issue comments family Total #issue comments from issue family.
issue comments outside Total #issue comments from issue outside

Issue Mentions issue mentioned repo Total #issue mentions of users in users repo.
issue mentioned family Total #issue mentions of users exclusively in the family.
issue mentioned outside Total #issue mentions of users outside the family.

Issue Events issue closed Total #issues closed.
issue subscribed Total #issues subscribed.
issue unsubscribed Total #issues unsubscribed.
issue reopened Total #issues reopened.
issue assigned Total #issues assigned.
issue referenced Total #issues referenced.

Based on this, it is natural to expect that the two types
of forks may demonstrate differences when it comes to their
lifespan as well as their development activity. One intuitive
hypothesis would be that, in general, social forks may have a
shorter lifespan with a denser development activity; this is

the case when a social fork contributes a small “patch” back
to the parent, whose development is done over a short but
intensive period with lots of commits. However, other social
forks may have a longer lifespan, remaining active for a longer
time, and contributing changes in spurts, i.e., contributing

CASCON’22, November 15–17, 2022, Toronto, Canada Hadian, et al.

Table 2: Fork types in our dataset by threshold com-
pared to that in Zhou et al. [20]

Our Dataset Compared to [20]
Commits #Hard #Social Precision Recall Accuracy

1 919 1,648 44.37 7.31 64.78

25% 1,100 1,467 56.95 7.85 58.15

50% 1,256 1,311 73.51 7.32 41.76

75% 1,520 1,047 66.22 7.99 52.26

ALL 1,634 933 78.14 7.24 37.32

multiple patches, back to the parent. On the other hand, hard
forks may correspond either to projects that have started
to evolve independently and follow their own development
progress, or repositories that were forked (perhaps for social
reasons), but were slowly abandoned. Our intention is to
recover such patterns, study them in the context of our entire
dataset and within a per-family context and answer the
question if there are significant differences in development
activity between hard and social forks.

An interesting factor in the activity of forks within the
context of the same family is the “depth of the family tree”.
Brisson et al. [2] discuss how forking is not a sequential
process, but it can result in complex tree-like structures,
which implies that repositories within the same family may
be forked not directly from the parent of the family, but
from other forks. Therefore, one question that remains to be
investigated is whether the depth of a fork in the family tree
has an effect on its development activity and practices.

To respond to RQ1, we examined the following two null
hypotheses:

• RQ1.H10: Activity is similar across social and hard
forks.

• RQ1.H20: Activity does not vary along the depth of
the family tree.

Approach: The important metrics to test these hypotheses
are mainly the number of commits and the age of a repository.
In order to control project activity for project age, we calcu-
lated the metric of “activity density”, which simply shows the
average number of commits per day of activity. In practice,
this is a normalization of activity and it helps to differenti-
ate two repositories with, for example, heavy activity (large
number of commits), but a short and a long lifetime each.
The density was used as a continuous outcome to study the
relationship with other metrics of the repositories.

To validate our hypotheses statistically, we first checked
for normality of the activity metric using the Shapiro-Wilk
test (α = 0.05), whose null hypothesis states that the data
distribution under study is normal. Since this hypothesis
was rejected with p < 2.2e − 16, we can conclude that the
activity density metric values were not normally distributed,
hence we opted for non-parametric tests, i.e., Mann-Whitney
for RQ1.H10 and Kruskal-Wallis for RQ1.H20 (comparing
activity across 5 depth levels). In both cases, we used α = 0.05.
For the Kruskal-Wallis test, which is an omnibus test, we

used the Dunn post-hoc tests in case RQ1.H20 is rejected,
since this would allow to find the individual depth levels with
significantly more or less activity.

Results: There is a significant difference in activity
between hard and social forks. Testing our first hypothe-
sis with the Mann-Whitney test between the activity density
and the type of the fork (hard or social) rejected the null
hypothesis (p < 0.05) for all 5 thresholds, when examining
the entire dataset, i.e., all forks merged in a single dataset
without accounting for individual families.

Activity varies significantly along with depth of
the family tree. We obtained this result for our second
hypothesis through a Kruskal-Wallis test on activity density
for different depths of a fork in the repository family tree. We
could not reject the null hypothesis (with p = 0.1661). One
important reason for this could be the substantial imbalance
of the dataset with respect to the depth of each fork. More
specifically, out of the 3405 forks studied in total, 2964 were
immediate forks of the root of the family tree, 323 were forks
of forks and the other 72 were deeper in family tree up to
a depth of 5. For this reason, we repeated the analysis to
compare the activity between forks of depth 1 and forks
of depth more than 1. For this analysis, we performed a
Mann–Whitney U test. In this case, with p = 0.028, we can
reject the null hypothesis, thus activity differs between forks
of depth 1 and those deeper in the family tree.

The proportion of families with significant differ-
ences in activity between social and hard forks varies
from 4.1% to 13.7%. Continuing on the per-family analy-
ses, we performed a series of Mann-Whitney U tests to study
if there are indeed any emerging patterns with respect to
activity density and if these patterns are different between
social and hard forks within the same family. Table 3 shows
the numbers of families where different patterns of activity
(“Activity” columns) were observed between social and hard
forks. We performed the test for all considered thresholds
of merged commits between forks and baselines. In some
families, depending on the threshold, only one type of fork
(either social or hard) occurs, as shown by the number of
families with a single type of fork in the last column of Ta-
ble 3. Examining the results more carefully, we found that
14 out of 75 families have a significant difference in activity
between hard and social forks in at least one of the 5 thresh-
olds. However, these families account for about 49% of our
entire dataset. As a result, they seem to be responsible for
the global outcome when all forks are merged into a single
dataset. On the other hand, 50.7% (threshold “1 commit”)
to 85.3% (threshold “ALL”) of families do not exhibit signifi-
cant differences in activity. However, these families have an
average of 28 forks per family accounting for 51% of the total
number of repositories in our dataset. While it is evident
that the size of the family has an impact on the results, we
can argue that in larger families with more forking activity,
the development intensity seems to differ between hard and
social forks consistently across different merge thresholds to
distinguish between the two types.

Exploring Trends and Practices of Forks in Open-Source Software Repositories CASCON’22, November 15–17, 2022, Toronto, Canada

Table 3: Differences in Activity (based on activity
density) and Dependencies (based on Jaccard dis-
tance) per family between social and hard forks for
different pull request thresholds.

Activity Dependencies

p < 0.05 p > 0.05 p < 0.05 p > 0.05

Single
type
fami-
lies

1 com. 10 63 8 65 2
25% 3 70 6 67 2
50% 4 67 6 65 4
75% 8 61 5 64 6
ALL 6 62 5 63 7

3.2 RQ2: Dependency Analysis

Motivation: The premise behind analyzing dependencies to
study differences between forks and parents is that depen-
dencies, along with code and documentation, can be used
to accurately describe the purpose and the functionality of
a project. Even in the presence of general-purpose depen-
dencies, like logging, authentication, a certain number of
dependencies are project or domain-specific, clearly indicat-
ing functionality. In the context of project families, we can
easily deduce some drift in functionality and purpose between
forks and parents by simply comparing the sets of dependen-
cies. Unlike dependencies, code may require cumbersome and
expensive comparisons to find differences, while documenta-
tion, when available, requires equally complicated natural
language processing, with the associated shortcomings.

In this work, we focus on dependencies and more specif-
ically on the presence or absence of dependencies between
forks and parents, not version updates of existing dependen-
cies. This is because dependency updates are a very common
change, especially between forks and parents, but do not
necessarily contribute to a drift in functionality. In addition,
as mentioned before, build files, where dependencies are ex-
plicitly specified, usually leave version as a variable, exactly
because it changes often and in most cases the latest version
is the one required.

To respond to RQ2, we examined the following two null
hypotheses:

• RQ2.H10: Dependency sets are similar across social
and hard forks.

• RQ2.H20: Dependency sets do not vary along the depth
of the family tree.

Approach: To capture differences in dependencies, we con-
sidered the set of dependencies for every repository as de-
clared in a build file (pom.xml or build.gradle). We excluded
the version information from each dependency to avoid ver-
sion updates to be considered as different dependencies (cf.
motivation). We then calculated the difference in the depen-
dency sets between the parent and each fork in terms of the
Jaccard distance between the two sets.

0

50

100

150

200

0.00 0.25 0.50 0.75 1.00
Jaccard Distance

R
ep

os
ito

rie
s

depth

1

2

3

4

5

Figure 1: Frequency of repositories per Jaccard dis-
tance.

To validate our hypotheses for RQ2, we followed a similar
approach to that for RQ1. The Shapiro-Wilk test (α = 0.05)
showed that the Jaccard distance data is not normally dis-
tributed (p < 2.2e− 16). Therefore, similar non-parametric
tests were applied, Mann-Whitney for RQ2.H10 and Kruskal-
Wallis for RQ2.H20 (comparing activity across 5 depth lev-
els) with α = 0.05. In case RQ2.H20 is rejected, we applied
post-hoc Tukey tests [18] to see if the Jaccard distance is
significantly different between different depths.

Results: Deeper forks tend to have a larger proba-
bility of changing dependencies. Only 1,361 repositories
out of a total of 3,330 studied repositories (excluding par-
ent repositories) had the exact same set of dependencies as
their respective parent. Furthermore, Figure 1 shows the
number of repositories with specific Jaccard distances. For
every distance, the plot also includes the different proportions
according to the depth of the repository. Depth 1 corresponds
to forks of the parent, depth 2 corresponds to forks of forks
and so on. We can observe that as the depth increases the
probability for greater deviations from the set of dependen-
cies of the parent also increases, i.e., deeper forks tend to
have a larger probability of changing dependencies.

We studied in detail the relationship between the Jaccard
distance and the depth in the family tree to identify the
degree to which the deviation in dependencies is stronger
as we go deeper. Our dataset contained forks up to a depth
of 5 (where 0 is the depth of the parent repository). The
results for the Kruskal-Wallis test showed that the Jaccard
distance can become significantly higher as we go deeper in
the family tree. In addition, the post-hoc Tukey tests show
that the Jaccard distance is significantly different between
level 1 and each deeper level (i.e., 1-2, 1-3, 1-4), but there is
not much difference between other levels. From this, we can
deduce that starting from depth 2 the set of dependencies has
deviated enough from the parent that the Jaccard distances
among all the deeper forks are significantly different.

CASCON’22, November 15–17, 2022, Toronto, Canada Hadian, et al.

Between 7.2% and 10.9% of families show a sig-
nificantly higher deviation of dependencies in social
forks compared to hard forks. To study if the type of
fork plays a role in the deviation of dependencies, we again
performed a series of Mann-Whitney U tests per family of
repositories to see if the Jaccard distances per type of fork
come from different distributions. As shown in Table 3 (col-
umn Dependencies), this hypothesis was confirmed only for
a few families for every threshold of commits. Nevertheless,
when we considered all studied repositories, outside the con-
text of families, the corresponding Mann-Whitney U tests for
every threshold confirmed the hypothesis that the Jaccard
distances produce different distributions for social and for
hard forks, respectively. We also found that 9 out of 75 fami-
lies had significantly different dependency sets between hard
and social forks, according to Jaccard distance. These families
accounted for about one third (34.8%) of the dataset with
an average of 131 forks between them. On the other hand,
at least 89% of families did not show significant difference in
their dependency sets between hard and social forks. These
families accounted for about 65% of our dataset, but with an
average of 33 forks per repository. Once again, the difference
in dependency sets seems to be more prominent for larger
families with more forking activity.

3.3 RQ3: Communication and Evolution
Analysis

Motivation: As fundamentally collaborative activities, soft-
ware projects have a pronounced social aspect that involves
significant amounts of direct or indirect communication among
developers. Based on the definitions for hard and social forks,
we hypothesize that the quantity and the means of com-
munication would be different for the two types of forks.
Moreover, we explore if communication differs between the
different evolution patterns, as expressed by activity density
and differences in dependencies between forks and parent
projects.

To respond to RQ3, we examined the following three null
hypotheses:

• RQ3.H10: Communication is the same between hard
and social forks.

• RQ3.H20: Communication is the same between differ-
ent levels of activity density.

• RQ3.H30: Communication is the same between differ-
ent levels of Jaccard distance, representing the differ-
ence between forks and parents with respect to depen-
dency sets.

Approach: Since communication cannot be encapsulated in
a single value and rather it consists of multiple parameters,
the hypotheses were not checked with simple statistical tests
that would accept or reject the null hypothesis. Rather, we
trained different regression models with the communication
metrics as the predictors, and the respective parameter for
each of the above hypothesis: logistic (hard vs social) for
H10, activity density for H20, and Jaccard distance for H30.
The models will tell us how accurately the communication

metrics can predict, or in our case explain, the outcomes.
If there exist statistically significant (p < 0.05) predictors
and the regression model is well-fitted (according to R2), we
assume that there is significant difference in communication
between the different outcomes. The logistic regression model
was trained for all five thresholds studied for hard and social
forks.

Results: Evidence was found that certain communi-
cation elements (users, followers, issues) are different
between social and hard forks. Table 4 shows the re-
sults for the logistic regression models with the type of fork
as outcome and the communication metrics as input. The
significance for each communication metric is shown with
respect to its p-value: ∗ => p ≤ 0.05, ∗∗ => p ≤ 0.01,
∗ ∗ ∗ => p ≤ 0.001.

As it can be seen by R2 for each threshold, communication
metrics cannot predict the type of fork with high accuracy.
However, we can see that the model fitness progressively
increases as we relax the threshold. While this may be due to
data availability or outcome imbalance, as it was discussed in
Table 2 the balance with respect to the outcome changes uni-
formly between the threshold. As a result we can understand
that the prediction is better when we have more social forks.
This conclusion is intuitive as social forks tend to be more
active in terms of communication, especially within the same
family, as we will discuss next. However, a more microscopic
analysis is needed to further confirm this finding.

With respect to significant communication predictors, we
can also see certain patterns. For example, it can be seen
that the number of users and the number of common users
within the family are both significant predictors across all
thresholds. However, the respective trends between the two
metrics are opposite. The more users we have in a fork, the
higher the log-odds that the fork is a hard fork, while the
more users within the family, the higher the log-odds for a
social fork. Again, this is an intuitive finding, given that in
social forks users tend to be active in at least two forks, the
social fork and the parent. A similar observation can be made
for followers within the family, where in social forks users
tend to follow multiple repositories within the same family.

An interesting pattern can be observed with respect to
issues. While the number of issues within the family are
an important predictor for the type of fork, but conversely
to users and followers, a higher number of issues within the
family implies higher log-odds for a hard fork. In the contrary,
more issues by users outside to family imply higher log-odds
for a social fork. We speculate that this finding may be
circumstantial based on how the repositories are used. In any
case, both metrics are neither very significant nor consistently
significant across all thresholds. Finally, there seems to be
no or little connection between pull requests and the type of
fork.

High communication metrics are correlated with
high development activity in terms of commits. Ta-
ble 5 shows the results of the linear regression models with
the activity and Jaccard distance as the outputs. One first
observation is that the model between communication and

Exploring Trends and Practices of Forks in Open-Source Software Repositories CASCON’22, November 15–17, 2022, Toronto, Canada

Table 4: Significant communication metrics across all thresholds.

Metric ALL 75% 50% 25% 1 Commit

(Intercept) -0.63*** -3.71*** -3.82*** -4.086*** 2.52***
forks 0.052** -0.005** 0** -0.004* 0.05
users repo 0.55*** 0.41*** 0.42*** 0.32*** 0.86***
users also in family -0.61*** -0.39*** -0.38*** -0.35*** -0.85***
followers repo 0 0.050 0.020 0.053 -0.04
followers family 0* -0.01* -0.03*** -0.06*** -0.01***
followers outside 0 0 0 0 0*
pr repo 0 0.01 0.009 0.01 0.02
pr family 0 0 0 0 -0.01***
pr repo comments 0 0 0 0.01** -0.01
pr family comments 0* 0* 0* -0.00 0**
pr repo code comments 0.01 0 0.01 -0.02 0.28
pr repo code comments 0.02*** 0* 0.01*** 0 0.01
issue repo 0.10 -0.05 -0.06 -0.05 -0.49*
issue family 1.71 0.55** 0.55** 0.91*** 12.39
issue outside -0.09** -0.01* -0.01* -0.01* -0.01
issue assigned 0.11 -0.02 -0.03 -0.21 -4.99*

R2 0.084 0.132 0.149 0.154 0.155

Table 5: Coefficients of communication metrics for
Activity Density and Jaccard Distance in linear re-
gression models.

Communication metrics Activity Density Jaccard

(Intercept) 1.83E-02* 3.25E-01***
forks 1.05E-04 4.66E-04
user repo -6.59E-03 2.34E-02***
user also in family 2.37E-02*** -2.43E-02***
followers repo 1.55E-02*** 9.91E-03**
followers family -6.39E-05 -1.03E-03**
followers outside -1.69E-06 6.10E-06***
pr repo 4.09E-03*** -7.78E-04
pr family 2.19E-03*** -2.72E-04
pr repo comments -1.33E-04 -8.39E-04
pr family comments 3.22E-04*** -7.43E-06
pr repo code comments 9.90E-04 -2.61E-03
pr family code comments -4.98E-04* -1.25E-03***
issue repo 1.22E-02* 6.43E-03
issue family -2.40E-02 -4.18E-02
issue outside -2.17E-02 7.73E-03
issues assigned repo 2.71E-03 0.24048

R2 0.4731 0.02446

activity had R2 = 0.4731 showing a good fit and a potential
relationship between activity density and communication.
More specifically, we can see that repositories with a high
number of users within the family of the fork, followers, pull
requests of the fork and of the family and issues also have high
activity with respect to daily commits. Unlike the type of
fork, pull requests and some of their respective social metrics
are found to be good predictors of activity density.

Communication metrics are not highly correlated
with differences in the dependency sets between par-
ent repositories and forks. The fitness of the linear re-
gression model with the Jaccard distance as the output was
R2 = 0.02446, which may imply that there is no strong re-
lationship between communication and the purpose of the
repository as manifested by its dependencies. Even so, we can
see that high values for repository specific communication
metrics, like number of users and number of followers, imply
high Jaccard distance and consequently greater deviation of
the fork’s dependencies from the parent. Conversely, high
values of family related communication metrics, like users,
followers and commit comments in pull requests, imply lower
Jaccard distance and more similar dependency sets between
the fork and the parent. Given that, as we have shown in
RQ2, low Jaccard distance is correlated with social forks, it
makes sense that higher communication activity within the
broader family of the fork implies social forks.

Overall, we can confirm that communication metrics can
be used to indicate differences between the type of the fork
(hard vs social) or between different levels of activity density
(in terms of daily commits). Therefore, we can reject the null
hypotheses RQ3.H10 and RQ3.H20. However, our analysis
could not identify a strong correlation between communica-
tion metrics and the difference in the dependency sets (based
on the Jaccard distance). Therefore, we could not reject the
null hypothesis RQ3.H30.

4 RELATED WORK

4.1 Forks and Pull Requests

Forks and the practice of forking have been of interest to
software engineering researchers for over 20 years [20]. Several
studies have attempted to categorize forks by type. Zhou et al.

CASCON’22, November 15–17, 2022, Toronto, Canada Hadian, et al.

[20] differentiate between “hard” and “social” forks. Social
forks are frequently used to enable contributions from devel-
opers who are external to a project. Independent or “hard”
forks [20] often result in competing development activities
and significantly different project directions.

Rastogi and Nagappan [11], identify three types of GitHub
forks: contributing, independent, and inactive. Contributing
forks are similar to social forks in [20] in that are used to
integrate changes into the forked project (baseline) via pull
requests (PRs) whereas, independent forks do not issue pull
requests and have internal commits that differ from those in
the baseline project [11] (akin to hard forks in [20]). Inactive
forks do not issue pull requests and do not have any commits.
Contributing forks are further classified into those which are
mostly used to fix bugs and those which are used to add new
features or functionality, and those that are used to change
configurations [8, 14].

Jiang et al. [8] investigated why and how developers fork
what from whom in GitHub. They observed that a common
reason developers fork a repository is to send pull requests,
fix bugs, and add new functionality [10, 14].

Robles and González-Barahona [13] found that a minority
of forks are merged back into the baseline repository. More-
over, the number of forks that integrate code from similar or
parent projects is extremely low.

A study on the topic of clone-based variability management
demonstrated that practices such as clone-and-own is broadly
used in the Android ecosystem [3]. The study explored An-
droid apps that can be accessed through the official app store
as well as Google Play. A total of 88 Android application
families were analyzed. They found that: 1) the propagation
of code from one variant to another one is not more common
in the applications, and 2) the number of parent forks that
propagate code through pull requests is very low.

4.2 Communication

There is substantial research on the significance of communi-
cation in GitHub. Tsay et al. [17] explore metrics that relate
to PR acceptance, including the number of comments, and
the social connections between the contributor and project
manager. Zhang et al. [19] explore the effects of @mentions
on processing PRs, including reducing the delay of developer
collaboration. Bissyandé et al. [1] conduct a large scale study
on GitHub issues, including how they relate to repository
success. Destefanis et al. [5] look specifically at issue com-
ments, and explore how sentiment differs between users and
project contributors. Dabbish et al. [4] make the case that
GitHub contains a rich set of social inferences.

The notion of a software family is introduced in [2] in order
to analyze developer interaction within repositories, among
repositories within the same family, and among families. The
study found that interactions from developers in the same
software family share a relationship with repository stars.
Their results suggest that a software family is an interesting
concept for investigating developer contributions.

5 CONCLUSION

The work presented in this paper aimed at studying the cur-
rent practices and trends of forking in open-source software
repositories. The study explored how forks evolve with respect
to their parent repository and how this forked evolution may
manifest itself in differences between forks of the same family
of repositories with respect to the purpose of the fork, the
development activity, the functionality of the software and
the communication intensity between developers. Our results
showed that within repository families we can differentiate
between hard and social forks and that these two types of
forks show different patterns with respect to the development
activity, the evolution of dependencies and the social inter-
actions between the developers. We have also shown that
differences in development practices are also correlated with
communication activity.

The main objective of the study was to show that we
can easily characterize a fork, understand its purpose, and
potentially predict its evolution with respect to its parent,
by observing measurable and pragmatic indexes such as the
number of commits, the number users, the size and depth
of the repository family, among others. The practical use-
fulness of this finding is the increase in developer awareness
of software projects and the increased ability to onboard
new members in development activities. By focusing on a
small set of specific indexes and metrics and having a general
awareness of the family of a fork, a developer, new or old,
can understand a lot about the evolution of the project.

Although our study was extensive in terms of the number
of repositories and families of repositories it considered, at
this stage its nature was mostly observational. In the future,
we plan to focus deeper on specific families and repositories
to identify case studies that can provide explanations and
potentially more specific patterns that would further justify
our findings. Personally contacting developers of the studied
repositories, as in the case of Zhou et al. [20], would further
confirm the value and practicality of our findings.

REFERENCES
[1] Tegawendé F Bissyandé, David Lo, Lingxiao Jiang, Laurent

Réveillere, Jacques Klein, and Yves Le Traon. 2013. Got issues?
who cares about it? a large scale investigation of issue trackers
from github. In 2013 IEEE 24th international symposium on
software reliability engineering (ISSRE). IEEE, 188–197.

[2] Scott Brisson, Ehsan Noei, and Kelly Lyons. 2020. We Are Fam-
ily: Analyzing Communication in GitHub Software Repositories
and Their Forks. In 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 59–69.

[3] John Businge, Moses Openja, Sarah Nadi, Engineer Bainomugisha,
and Thorsten Berger. 2018. Clone-based variability management
in the android ecosystem. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 625–
634.

[4] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb.
2012. Social Coding in GitHub: Transparency and Collaboration
in an Open Software Repository. In Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work (Seattle,
Washington, USA) (CSCW ’12). ACM, New York, NY, USA,
1277–1286.

[5] Giuseppe Destefanis, Marco Ortu, David Bowes, Michele Marchesi,
and Roberto Tonelli. 2018. On measuring affects of github issues’
commenters. In Proceedings of the 3rd International Workshop

Exploring Trends and Practices of Forks in Open-Source Software Repositories CASCON’22, November 15–17, 2022, Toronto, Canada

on Emotion Awareness in Software Engineering. 14–19.
[6] Daniel M. German, Bram Adams, and Ahmed E. Hassan. 2015.

Continuously Mining the Use of Distributed Version Control Sys-
tems: An empirical study of how Linux uses git. Empirical
Software Engineering 21, 1 (2015), 260–299.

[7] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent:
GitHub’s data from a firehose. In 2012 9th IEEE Working Con-
ference on Mining Software Repositories (MSR). IEEE, 12–21.

[8] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh
Kochhar, and Li Zhang. 2017. Why and how developers fork
what from whom in GitHub. Empirical Software Engineering 22,
1 (2017), 547–578.

[9] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M German, and Daniela Damian. 2014. The promises
and perils of mining GitHub. In Proceedings of the 11th working
conference on mining software repositories. 92–101.

[10] Linus Nyman and Tommi Mikkonen. 2011. To fork or not to fork:
Fork motivations in SourceForge projects. International Journal
of Open Source Software and Processes (IJOSSP) 3, 3 (2011),
1–9.

[11] Ayushi Rastogi and Nachiappan Nagappan. 2016. Forking and
the Sustainability of the Developer Community Participation–An
Empirical Investigation on Outcomes and Reasons. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 102–111.

[12] Eric S. Raymond. 1998. Homesteading the Noosphere. First
Monday 3, 10 (Oct. 1998). https://doi.org/10.5210/fm.v3i10.621

[13] Gregorio Robles and Jesús M González-Barahona. 2012. A com-
prehensive study of software forks: Dates, reasons and outcomes.
In IFIP International Conference on Open Source Systems.
Springer, 1–14.

[14] Stefan Stanciulescu, Sandro Schulze, and Andrzej Wasowski. 2015.
Forked and integrated variants in an open-source firmware project.
In 2015 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 151–160.

[15] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto. 2017. An Empirical Comparison of Model Validation
Techniques for Defect Prediction Models. IEEE Transactions on
Software Engineering 43, 1 (2017), 1–18.

[16] TIOBE. 2020. TIOBE Index for August 2020. https://www.
tiobe.com/tiobe-index/

[17] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence
of Social and Technical Factors for Evaluating Contribution in
GitHub. In Proceedings of the 36th International Conference on
Software Engineering (Hyderabad, India) (ICSE 2014). ACM,
New York, NY, USA, 356–366.

[18] John W Tukey. 1949. Comparing individual means in the analysis
of variance. Biometrics (1949), 99–114.

[19] Y. Zhang, G. Yin, Y. Yu, and H. Wang. 2014. A Exploratory
Study of @-Mention in GitHub’s Pull-Requests. In 2014 21st
Asia-Pacific Software Engineering Conference, Vol. 1. 343–350.

[20] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. 2020. How
Has Forking Changed in the Last 20 Years? A Study of Hard Forks
on GitHub. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE.

https://doi.org/10.5210/fm.v3i10.621
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

	Abstract
	1 Introduction
	2 Study setup
	2.1 Data Collection - Repositories
	2.2 Data Collection - Metrics

	3 Results and Discussion
	3.1 RQ1: Fork Evolution Analysis
	3.2 RQ2: Dependency Analysis
	3.3 RQ3: Communication and Evolution Analysis

	4 Related work
	4.1 Forks and Pull Requests
	4.2 Communication

	5 Conclusion
	References

