
EXAF: A search engine for sample applications of object-oriented

framework-provided concepts

Ehsan Noei , Abbas Heydarnoori ∗

Department of Computer Engineering, Sharif University of Technology

a r t i c l e i n f o

Article history:

Received 14 November 2015

Revised 26 March 2016

Accepted 28 March 2016

Available online 14 April 2016

Keywords:

Object-oriented application frameworks

Framework-provided concepts

Sample applications

Frameworks comprehension

Code search engines

a b s t r a c t

Context : Object-oriented application frameworks, such as Java Swing , provide reusable code and design

for implementing domain-specific concepts, such as Context Menu , in software applications. Hence, use of

such frameworks not only can decrease the time and the cost of developing new software applications,

but also can increase their maintainability. However, the main problems of using object-oriented applica-

tion frameworks are their large and complex APIs, and often incomplete user manuals. To mitigate these

problems, developers often try to learn how to implement their desired concepts from available sample

applications. Nonetheless, this introduces another hard and time-consuming challenge which is finding

proper sample applications.

Objective : To address this difficulty, we introduce EXAF (EX ample A pplications F inder) that helps develop-

ers find sample applications which implement their desired framework-provided concepts.

Method : The majority of existing framework comprehension approaches can only help programmers to

get familiar with the usage of particular fine-grained API elements of the desired framework such as its

classes and methods. Nevertheless, our approach is able to find sample applications that implement a

particular framework-provided concept. To this end, EXAF benefits from the Latent Semantic Indexing (LSI)

information retrieval technique. We evaluated the approach using 24 concepts on top of the Microsoft

.Net, Qt, and Java Swing frameworks.

Results : Based on our evaluations, the precision of EXAF is more than 79%. Besides, it can find some

sample applications that could not be found by common code search engines such as the ones which are

used in SourceForge and Google Code .

Conclusions : The results of our evaluations indicate that EXAF is effective in practice, and yields better

search results because it considers various artifacts of a project like user reviews and bug reports.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Software reuse is the use of existing software or knowledge to

build new applications [1] . This can help developers to increase

the quality of their software systems and to reduce the costs

of software development [2] . Object-oriented application frame-

works, such as Eclipse and .Net , can enable the reuse of both code

and design [3] . Frameworks provide domain-specific concepts , which

are generic units of functionality. Framework-based applications

are developed by writing application code that instantiates those

∗ Corresponding author. Tel.: +982166166648; fax: +982166019246.

E-mail addresses: enoei@ce.sharif.edu (E. Noei), heydarnoori@sharif.edu (A. Hey-

darnoori).

URL: http://sharif.edu/˜heydarnoori/ (A. Heydarnoori)

concepts [4–6] . For example, the Eclipse framework offers con-

cepts such as viewers and editors . Eclipses Package Explorer and

Java Editor are instances of these concepts. Consequently, one of

the most important parts of a framework for application develop-

ers is the Application Programming Interface (API) of that framework

[7] . However, many of the existing frameworks often have complex

and large APIs, and typically suffer from the lack of proper docu-

mentation [8] . To address these issues, developers usually try to

investigate available sample applications to realize how to use a

given API; this is what Gamma et al. [9] refer to it as the “Monkey

See/Monkey Do” rule. Nevertheless, looking for sample applications

over and over is an irritating job. In addition, users may fail to find

their ideal example applications.

To tackle the above issues, a number of framework compre-

hension approaches have been proposed in literature. For instance,

http://dx.doi.org/10.1016/j.infsof.2016.03.007

0950-5849/© 2016 Elsevier B.V. All rights reserved.

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

Tran et al. [10] mine the structure and the contents of API docu-

mentation to find relevant methods. Cubranic et al. [11] propose an

approach to recommend some artifacts that are relevant to a task

that a developer is currently conducting. Exemplar [12] uses API

calls executed by an application to search for applications. Code-

Genie [13] allows the programmers to design test cases for a spe-

cific feature. Then, CodeGenie looks for a sample implementation

based on the information in those test cases. Designing such test

cases can be a tedious task when users are not much familiar with

a framework.

The majority of existing framework comprehension approaches

can only help programmers to get familiar with the usage of par-

ticular fine-grained API elements of the desired framework such

as classes and methods. Nevertheless, none of them help novice

developers to find suitable sample applications in the absence of

appropriate documentation. According to the “Monkey See/Monkey

Do” rule, in the case of lacking enough documentation and manu-

als, programmers try to have a look at available example applica-

tions to learn how to implement their desired framework-provided

concepts.

With respect to above discussions, there can be the following

issues in using application frameworks [14] : (i) large and complex

APIs; (ii) lack of enough documentation; (iii) available documenta-

tion may be inaccurate or imprecise; (iv) making proper documen-

tation is a hard and time-consuming task which prevents devel-

opers to create them adequately; (v) every single concept imple-

mented in the example application is not necessarily described in

the documentation; (vi) novice programmers are not familiar with

the details of using a particular framework; and (vii) finding ap-

propriate sample applications is a difficult task. To mitigate these

problems, in this paper, we propose EXAF (EX ample A pplications

F inder) to help programmers find appropriate example applications

that implement their desired concepts on top of a particular frame-

work.

In our approach, we suppose that a user is not an expert to

use the framework [15] . Thus, the user would not know the ex-

act name of the desired concept in the jargon of that particular

framework. Consequently, we expand the user-provided keywords

using the Latent Semantic Indexing (LSI) technique [16] . Next, we

search for relevant sample applications in software projects host-

ing sites, such as SourceForge 1 and Google Code 2 , with the help

of the expanded keywords. For this purpose, we analyze different

artifacts of available sample applications such as users’ comments

and bug reports. From the information extracted from these arti-

facts, we may probably find a number of sample applications that

implement the desired concept. Finally, we rank the results and

present them to the user. Our evaluations show that the precision

of our approach is more than 79% that is more than the preci-

sion of available code search engines such as the ones provided

by Google Code and SourceForge.

Our proposed approach in this article complements our ear-

lier work on FUDA [4–6] . FUDA automatically generates concept-

implementation templates from dynamic traces collected at runtime

from sample applications. The FUDA’s concept-implementation

templates are Java pseudocodes that summarize necessary imple-

mentation steps required to implement a desired concept on top of

a particular framework. Hence, the work presented in this article

automates the FUDA’s manual step of finding sample applications.

The contributions of this article include: (i) finding example ap-

plications of framework-provided concepts regardless of the qual-

ity and the availability of a framework’s documentation; (ii) pro-

viding a solution for FUDA to find required example applications

1 http://www.sourceforge.net
2 http://code.google.com

automatically; and (iii) applying the LSI information retrieval tech-

nique, and taking into account code comments and user reviews

in the search process to get better results in terms of accuracy

and precision compared to powerful general-purpose search en-

gines like Google.

The remainder of this paper is organized as follows.

Section 2 provides a motivating example of how EXAF works.

Section 3 presents the details of EXAF. Next, Section 4 describes

our implementations of EXAF. Afterwards, Section 5 discusses the

evaluation method and the results of our evaluations. Section 6 has

an overview of related work and compares them with our pro-

posed technique. Finally, Section 7 concludes the paper.

2. Motivating example

Assume a programmer wants to implement a context menu on

top of the Java Swing framework. Suppose this programmer is not

an expert in Java Swing and thus, does not know the name of the

desired concept in Java Swing. More specifically, the programmer

is not aware of the fact that a “context menu” is referred to as

a pop-up menu in Java Swing. Consequently, just looking for the

term “context menu” reduces the chance of finding proper example

applications in existing software projects repositories.

EXAF tackles the above issue via expanding the term “context

menu” to other relevant terms, such as pop-up menu and qmenu .

For this purpose, EXAF uses the pages from the Stack Overflow

3

website as the main resource for creating its corpus, and then ap-

plies the LSI information retrieval technique on it. This helps EXAF

to expand the user-provided keywords into the domain of software

engineering and programming. On the other hand, if EXAF had ap-

plied alternative approaches like using WordNet [17] , which is a

lexical database for the English language, it would had got irrele-

vant terms, such as bill, dish , and card for the term “context menu”.

This would have caused EXAF to generate inappropriate results.

EXAF not only uses the descriptions of applications, but also

looks through the reviews to find proper sample applications that

implement a desired concept on top of a particular framework. In

the case that the name of the concept is not mentioned in the

descriptions of applications, EXAF looks into the reviews. For in-

stance, Fig. 1 shows a sample project in SourceForge that the term

“context menu” has been mentioned in reviews, but not in that

project’s descriptions. This example illustrates that by not consid-

ering the reviews, we would have missed such sample applications.

EXAF ranks the retrieved projects based on the expanded keywords

and other factors, such as the title of the project (see Section 3.3).

Thus, the programmer would get a ranked list of projects that im-

plement a “context menu” in Java Swing.

To indicate how the ranking process of EXAF works, we use the

following notation to show the sample projects retrieved by EXAF

for the concept “context menu”: < t, d , < r > > in which t is the

title of the project, d is the description of the project, and < r > is

the set of all reviews for that project. Now, consider the following

two examples:

Example 1. Suppose the following two sample applications are re-

trieved:

1. < Awesome context menu: This project implements context menu

with a very user-friendly interface, < ∅ > >

2. < Business management assistant: This program helps managers

to come up with the difficulties of managing [...], < I cannot add

my account name, in the context menu there is an option [...] > >

EXAF ranks the above two sample applications using a cus-

tomized version of BM25F [18] (see Section 3.3 for details). This

3 http://www.stackoverflow.com

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

Fig. 1. A sample project in SourceForge. In users’ review, the term context menu can be seen while nothing about it is mentioned in the project’s description.

Fig. 2. The usage scenario of EXAF; < c, f > is the input query in which c denotes

the desired concept, and f is the name of the framework; < prj 1 , prj 2 , ..., prj n > is a

ranked list of retrieved sample applications.

causes the first project to be returned first, and the second one

comes last. This is because the “context menu” is mentioned both

in the title and the description of the first project, but only in the

reviews of the second project. In our customized version of BM25F,

the title and the descriptions of projects are considered more im-

portant than that project’s reviews [19] .

Example 2. Now, assume the following two sample projects are

returned:

1. < Business management assistant: This program helps managers

to come up with the difficulties of managing [...], < I cannot add

my account name, in the context menu there is an option [...] > >

2. < Word editor: This word editor allows users to edit text [...], <

Run time error fixed, Context menu appears not in the right place,

Context menu does not have an option to copy the text > >

EXAF ranks the above two projects by giving the second project

a higher rank than the first one. This is because the context menu

is mentioned more frequently in the reviews of the second project

compared to the first one.

After getting the desired sample applications, the user can em-

ploy the FUDA [4–6] technique to get a summary of the concept-

implementation steps and locate them in those example applica-

tions.

2.1. Usage scenario

To summarize this section, Fig. 2 illustrates an overview of

EXAF’s usage scenario. To find example applications that imple-

ment a concept c on top of a framework f , the user has to specify

the arguments of the query which is in the form of a pair < c, f

> . For instance, to search for sample applications that implement

a “context menu” on top of the Java Swing framework, the query

would be < context menu, java swing > . The input query then gets

expanded by EXAF into a set of queries. For instance, our exam-

ple query would be expanded to < < context menu, java swing > ,

< popup menu, java swing > , < qmenu menu, java swing > > . In re-

sponse, the user gets a ranked list of sample applications that im-

plement the desired concept on top of the specified framework in

the form of a n-tuple ordered set < prj 1 , prj 2 , ..., prj n > such that n

is the number of retrieved sample applications, and prj i is the i th

application. Thus, the prj 1 is the most relevant sample application,

and prj n is the least relevant one based on EXAF’s ranking. The

user can then download the working sample applications from the

software projects hosting sites with the help of the URLs to those

sample applications provided by EXAF. Next, the user can use the

FUDA technique to locate the desired concept and get a summary

of steps that have to be taken to implement that concept.

3. Proposed approach: EXAF

EXAF includes three main steps as illustrated in Fig. 3 . First, the

user provides a number of keywords that describe the concept of

interest. EXAF then expands those keywords by applying the LSI

technique. Second, EXAF looks for available projects in software

projects hosting sites like Google Code and SourceForge to find ex-

ample applications that may implement the user’s desired concept.

Third, found sample applications are ranked and presented to the

user. In the following subsections, we describe the details of these

steps.

3.1. Expanding the keywords

As Fig. 3 shows, EXAF expands the user-provided keywords us-

ing the LSI technique. This has two main advantages in EXAF . First,

the user may not know the exact terms that express the desired

concept since she/he may not be familiar enough with that par-

ticular framework. For instance, a user may use the term pop-up

menu instead of the context menu to express the desired concept

which is the “context menu” in this particular example. However,

the term “pop-up menu” is meaningless in the jargon of the in-

tended framework. Second, the sample applications in software

projects hosting sites that we are looking for might have used dif-

ferent terms for the concept of interest in their artifacts like code

descriptions, comments, and source codes. Consequently, the input

query < c, f > gets expanded to a set of queries < < c, f > , < e 1 , f > ,

< e 1 , f > , ..., < e n , f > > where c is the input concept, f shows the

name of the desired framework, e i is the i th expanded keyword,

and n is the number of expanded keywords.

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

Expand

Keywords
Input

Concept

Software

Projects

Hosting Sites

Search

Concepts
Expanded

Words
RankFound

Examples

Ranked

Examples

LSI

Corpus

Fig. 3. The process of EXAF.

Similar to some earlier work in literature with respect to soft-

ware engineering specific WordNets, like W ordSim

SE
DB

[20] and SE-

WordSim [21] , EXAF also investigates online resources to expand

the keywords. However, EXAF applies the LSI information retrieval

technique [16] to expand the user-provided keywords. Information

retrieval techniques are mostly based on processing external doc-

uments which may be costly in terms of gathering all the relevant

keywords together. Nevertheless, our LSI corpus is based on the

keywords extracted from the pages of Stack Overflow. More specif-

ically, it only depends on the corpus that can be created without

any manual effort s such as filtering out irrelevant concepts and

keywords. The topics discussed in Stack Overflow are mainly re-

lated to computer science and software development. Stack Over-

flow is a Q&A website which features questions and answers on a

broad range of topics in computer programming and information

technology. In the following subsection, we introduce the LSI tech-

nique in more details and that how it is used in EXAF.

3.1.1. Latent semantic indexing (LSI)

LSI [16] is an approach for indexing data and retrieving informa-

tion. LSI works based on the mathematical and statistical princi-

ples. The LSI approach builds a matrix, called singular value decom-

position (SVD), to detect the relations between words in raw texts

with no prior assumption on the semantic relations amongst them.

Hence, the degree of the similarity of words can be computed. The

raw text documents are called the LSI corpus . The LSI technique as-

sumes that if the words go more often with each other, they may

have the same meaning or have a tight-knit relationship with each

other.

Fig. 4 shows the algorithm of LSI. As shown in Fig. 4 , the first

step of LSI computations is to create a large matrix, called the oc-

currence matrix , for comparing the words. Each row of this matrix

belongs to a word, and each column belongs to a document. The

similarity of the words can be computed by comparing the rows

of this matrix. The occurrence matrix is a m × n matrix. As this

matrix is a quiet large and usually sparse matrix, the LSI technique

suggests to break it into three smaller matrices as follows:

A = T × S × D

T (1)

In Eq. (1) , A denotes the occurrence matrix, T is called the term-

document matrix (a m × r matrix), S is the SVD matrix, and D

T is

the transpose of the concept-documents matrix (a n × r matrix).

These three matrices will be reduced in dimension by applying

some techniques like merging less related words together. Finally,

the occurrence matrix will be rebuilt with very smaller matrices

compared to the initial ones as follows:

A ≈ A K = T K S K D K
T (2)

In Eq. (2) , k demonstrates the new dimension of matrices after

the reduction and compression process (k � r); T K , S K , and D K
T re-

spectively denote the term-document matrix, SVD matrix, and the

transpose of the concept-documents matrix, after the size reduc-

tion. In EXAF, the user-provided keywords will be compared to all

other words available in the occurrence matrix and the words that

have a similarity higher than a particular threshold will be selected

as the expanded keywords.

Fig. 5 shows a discussion about an issue related to the Context

Menu concept in the Stack Overflow website. As it is shown in this

figure, there are several keywords, such as Pop-up Menu , that are

related to the Context Menu concept. So, by analyzing a number

of pages like this, the keywords related to the concepts of interest

could be detected. We used Stack Overflow to create our LSI corpus

because of the following two main reasons:

• The easiness of creating the corpus : Stack Overflow is a popular

Q&A website and thus, it includes many Q&A pages in which

related keywords are kept together. Hence, it was straightfor-

ward to treat each Stack Overflow’s Q&A page as one document

and use those documents to create the corpus.

• Unrelated keywords get eliminated automatically : One of the dif-

ficulties of applying the LSI technique is the words that are

not related to input keywords for the desired concept. How-

ever, since Stack Overflow features questions and answers on

a range of topics in the domain of computer programming, the

LSI corpus created from its pages would not propose out-of-

domain keywords. For instance, words like dish and restaurant

would never be expanded for the keyword menu for our Context

Menu example since they are out of the domain of computer

programming.

3.2. Searching software projects hosting sites for sample applications

After applying the LSI technique to expand the user-provided

keywords that describe the concept of interest, we can search in

software projects hosting sites like SourceForge to find example

applications implementing that concept. Fig. 1 is a screenshot of a

SourceForge page which shows comments for a particular project.

As can be seen in this figure, the comments indicate that the Con-

text Menu concept has been implemented in that project. However,

there are no words related to the Context Menu within the descrip-

tions of this project.

To address the above issue, EXAF expands user-provided key-

words using the LSI technique and use them afterwards to find

sample projects in SourceForge that implement the desired con-

cept. To increase the precision of the search process, as shown

in Fig. 6 , EXAF conducts a two-step approach for finding relevant

sample applications in SourceForge. In the first step, the keywords

entered by the user will be examined independently from the ex-

panded keywords. If the first step fails to find any sample applica-

tions, the second step will start. At the second step, the expanded

keywords would be searched instead of the user-provided key-

words to find relevant sample applications implementing the de-

sired concept. In other words, since expanded keywords are some-

how related to the original user-provided keywords based on the

LSI techniques, the sample applications mined using them would

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

Fig. 4. The LSI algorithm.

Fig. 5. A discussion related to the concept “context menu” in the Stack Overflow website. However, the keyword popup menu can be observed as well.

also be somehow relevant to the desired concept. For instance, the

expanded keywords could be the synonyms of the user-provided

keywords or can be those keywords that have a tight-knit rela-

tionship with them. As an example, the keywords Context Menu

and Pop-up Menu could be used interchangeably.

Another advantage of the two-step approach is that it can

increase the precision of the search process (see evaluations in

Section 5). In the first step, the exact keywords entered by the

user are searched. As the keywords provided by the user might

specify the desired concept more accurately than those which are

expanded, the sample applications found in the first step could be

more relevant than those found in the second step (see evalua-

tions in Section 5). However, the two-step approach using the LSI

technique increases the chance of finding relevant applications. In

other words, as discussed in the above example (cf. Fig. 1), only

using the user-provided keywords does not return any relevant re-

sults. However, after expanding the user-provided keywords, the

desired sample applications might be found. More specifically, af-

ter expanding the user-provided keywords, EXAF finds more rele-

vant applications because of two primary reasons: (i) according to

our observations, users do not necessarily use the same terms to

explain a particular concept [15,22,23] ; and (ii) novice users often

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

Hit
Yes

No

Ranking

Search ini�al words in
Google Code, Sourceforge

Yes

No

Start

Finish

Search expanded words in

Google Code, Sourceforge
Hit

Words

Fig. 6. The search process.

do not know much about the exact names of concepts in the jar-

gon of a particular framework [23,24] .

3.3. Ranking retrieved sample applications

After searching software projects hosting sites for relevant ex-

ample applications, the next step of EXAF is to rank found sam-

ple applications based on their relevancy. For this purpose, we re-

spectively take the following factors into account: (i) the title of

the project; (ii) the description of the project; (iii) the tags of the

project; and (iv) the comments, feedbacks, and the reviews of the

project. The rationale behind this prioritization is that (i) as stated

by Edmundson [19] , the title typically circumscribes the subject

matter of the text; and (ii) the developers or the owners of the

projects usually write the descriptions of projects and assign tags

to them, where the reviews can be written by third-party users

[25] . Hence, we conjecture that the descriptions of projects would

be more accurate than the reviews.

To rank the retrieved sample applications, we customize BM25F

[18] with length normalization with respect to the above factors.

BM25F is a standard retrieval function that ranks structured doc-

uments based on the relative proximity of query terms. EXAF also

filters out the results that are not relevant to the desired frame-

work by investigating the above factors of sample applications.

score (a, Q) =

∑

q in Q

log
N − n (q) + 0 . 5

n (q) + 0 . 5
× w (a, q)

k 1 + w (a, q)
. (3)

Eq. (3) shows the scoring formula to rank a sample application

a by a set of keywords Q (q 1 , q 2 , ..., q n). In Eq. (3) , N denotes the to-

tal number of results; n (q) shows the total number of results con-

taining the keyword q; w (a, q) denotes the weight of keyword q;

k 1 is a free parameter that controls the scale of that keyword’s fre-

quency; and 0.5 is a constant to deal with the cases that n (q) = 0 .

The weight of keywords can be calculated by Eq. (4) in which

p s represents the importance of each part, including subjects, tags,

and reviews. We assigned 4 to subjects, 2 to descriptions and tags,

and 1 to reviews, based on our analyses for the best results. f a q,s
shows the frequency of keyword q that occurs in the part s of ap-

plication a; l s is the length of part s; avl s is the average length

of part s in all of the sample applications found by EXAF; and

b s is a free parameter to control the document length. Based on

our investigations, similar to Shi et al. [26] , we finally came up

with k 1 = 2 and b s = 0 . 75 to get the best results in terms of ac-

curacy. This ranking function is also implemented in the Apache

Lucene 4 framework which is used in our EXAF implementations

4 http://lucene.apache.org/

(see Section 4):

w (a, q) =

∑

s in a

p s × f a q,s

(1 − b s) + b s × l s
a v l s

. (4)

4. The EXAF implementation

We implemented EXAF as an Eclipse plug-in. This implemen-

tation was then used in our evaluations of EXAF as will be dis-

cussed in Section 5. The implementation of EXAF includes two

main components that are described in the following: (i) the LSI

component, and (ii) the Search Engine component.

4.1. The LSI component

To implement the EXAF’s LSI component, we have to take care

of the following two issues: (i) building the LSI’s corpus, and (ii)

performing the LSI computations. To build our corpus, we analyzed

more than 6,0 0 0 pages of Stack Overflow. There are five impor-

tant sections in each Stack Overflow page: (i) the title, (ii) a ques-

tion, (iii) the responses to that question, (iv) the code snippets,

and (v) the tags. We analyzed each section by extracting the key-

words in that section and putting aside the irrelevant words such

as external-links and stop-words [28] . To conduct our LSI compu-

tations, we got advantage of the S-space package [29] .

One of the challenges of the LSI technique is to find the best

dimension to reduce the size of the term-document matrix. The

term-document is a large and sparse matrix which has to be cut

in dimension to make the computations more efficient. The smaller

dimensions make the calculations faster and more practical while

the bigger dimensions make the results more accurate. As pointed

out in [30] , a dimension around 300 usually gives the best results,

especially when the number of documents is hundreds or thou-

sands, and a dimension around 400 is suitable for millions of doc-

uments. However, another work [16] shows that the dimension be-

tween 50 and 10 0 0 has the best results depending on the contents

of the documents and their size. Therefore, we tested and analyzed

the dimensions of 50, 100, 200, 300, 400, and 800. We observed

that the best results are based on a dimension around 300.

Another challenge is the degree of similarity. As the words are

compared to each other using the Cosines similarity, a threshold

must be set to get the best results. We tested and investigated sev-

eral sample concepts to specify an appropriate threshold. Finally,

the similarity threshold of 0.7 with the dimension of 300, the sim-

ilarity of 0.57 with the dimension of 400, and the similarity thresh-

old of 0.52 with the dimension of 800 gave us the best results in

our evaluations (see Section 5). Based on our experiments and with

respect to Bradford’s statement [30] that the dimension of 300 is

mostly used by researchers for the best results, we chose the simi-

larity threshold of 0.7 with the dimension of 300 for EXAF to have

a more efficient solution.

4.2. The search engine component

To have a fast and efficient implementation of EXAF’s Search

Engine component, we used both Apache Solr 5 [31] and Apache

Nutch 6 . Apache Solr is an open source enterprise search platform

built on top of the Apache Lucene which is a full-featured text

search engine library written in Java. Apache Nutch is also an open

source web search engine based on Lucene. We customized these

5 http://lucene.apache.org/solr/
6 http://nutch.apache.org/

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

Apache open source engines in such a way that they satisfy EXAF’s

requirements. For instance, before indexing the words of a page,

we conducted a pre-indexing step to avoid indexing all the con-

tents of that page except the required ones, such as descriptions

and comments. Moreover, we tokenized on white-spaces and re-

moved stop-words. After that, we handled special cases, such as

dashes. Then, we lowercased all the terms. Finally, we stemmed

the documents using the Porter English algorithm [32] .

Apache Solr’s architecture includes three layers: (i) the interac-

tion, (ii) the Solr core, and (iii) the storage [33] . We used the SolrJ 7

client to access Solr. The Solr application layer is mainly respon-

sible for handling the relation between the Solr and the external

elements, such as handling the requests. There are also several pro-

cessing units such as de-duplication and language detection units.

Solr also uses Apache Tika 8 to detect and extract metadata and text

from different file types. The Apache Lucene is responsible for in-

dexing data and searching among the indexed documents. Finally,

the indexed documents will be saved in the index storage, and any

information about the schema and also the metadata will be saved

in a database.

We crawled and indexed the SourceForge website with a width

of 500 and a depth of 50 0 0. Depth shows the number of ad-

dresses to be crawled, starting from the initial seed. Width shows

the number of pages to be added to the address queue. To test

our search engine, we crawled and retrieved the information of

756,730 pages that belong to 95,172 unique projects. In addi-

tion to the SourceForge, to test our search engine on other soft-

ware projects hosting sites, we also crawled Google Code, but in

a smaller scale. We crawled and indexed the Google Code with a

width of 300 and a depth of 500, and we retrieved 12,838 pages

that belong to 1632 unique projects on the Google Code.

5. Evaluations

This section presents the evaluations of EXAF, including the

evaluation objectives, the evaluation setup, and the evaluation re-

sults.

5.1. Evaluations objectives

In our evaluations, we are in favor of answering the following

research questions:

1. Can EXAF retrieve proper sample applications for desired con-

cepts from software projects hosting sites like SourceForge and

Google Code?

2. Can EXAF produce more relevant results compared to other

search methods like the search engines used by SourceForge

and Google Code, or the general web search?

5.2. Evaluations setup

To answer the research questions mentioned in Section 5.1 , we

followed the following steps to perform the evaluations of EXAF:

Selection of frameworks. We evaluate EXAF on top of the Microsoft

.NET, Qt , and Java Swing frameworks. The reasons of choosing these

three frameworks are their complexity, popularity, and applica-

bility [34] . Microsoft .NET is an application framework that runs

on Microsoft Windows [35] . The Qt framework is a cross-platform

framework that is used for developing applications that can be run

on various software and hardware platforms [36] . Finally, the Java

Swing is a popular GUI framework for Java [37] .

7 https://wiki.apache.org/solr/Solrj/
8 https://tika.apache.org/

Table 1

Selected concepts on top of the Microsoft .Net, Qt, and Java Swing frameworks.

Concept Description

Context menu A menu in a graphical user interface that

appears upon user interaction, such as a

right-click mouse operation.

Table viewer An object for demonstrating tables.

Tree viewer An object for demonstrating trees.

Timer Keeps track of how much time has been spent.

Database connection An object for connecting to Database

Management Systems.

Card layout A layout manager for a container.

Shape A graphical item with external boundary and

outline.

Navigate Access different objects.

Array A data structure consisting of a collection of

elements.

Moving shape A shape that its position can be changed.

Generic interface An object that provides common functionality

across families of generic types.

Priority queue A queue with some priority rules.

Combo box A user input device in which the user can select

an option from a drop-down list or type in a

value into a text box.

Vector A data structure for storing quantity with

magnitude and direction.

Dialog An interaction tool.

TCP connection An object for that provides a network connection

using TCP protocol.

Label An object for showing unchangeable texts.

Progress bar An indicator that shows the current status of

a task.

Radio button A circle representing choices in a common

options list form in a graphical user interface.

Hashmap A data structure of hash.

Stack A data structure with first in, last out policy.

Graph A graphical representation object.

Thread A thread of execution.

Selection of concepts. We investigate the results of EXAF in finding

example applications for the 24 concepts that are listed in Table 1

on top of the .NET, Qt, and Java Swing frameworks. Table 1 pro-

vides a brief description of each concept as well. We sampled the

concepts from the developer forums of the respective frameworks

to answer real development issues.

Creating the queries and performing the search. For each of the 24

concepts listed in Table 1 , first we created a query statement in

the following way: a pair < c, f > is used to formulate the input

query where c is the desired concept, and f is the name of the de-

sired framework. Next, we used our implementation of EXAF (see

Section 4) to find sample applications for each of those concepts

on top of the Microsoft .NET, Qt, and Java Swing frameworks. The

output of EXAF is a ranked list of retrieved sample applications or-

dered by their relevancy to the input query.

5.3. Evaluations results

This section presents the results of our evaluations of EXAF.

The number of results. Fig. 7 a shows the number of retrieved ex-

ample applications from the SourceForge for each concept pre-

sented in Table 1 for the .Net framework. Similarly, Fig. 8 a and

Fig. 9 a respectively illustrates the number of retrieved example ap-

plications from the SourceForge for each sample concept on top of

the Qt and Java Swing frameworks. As indicated in these figures,

EXAF found a total of 139, 99, and 77 example applications for our

sample concepts on top of the .Net, Qt, and Java Swing frameworks

respectively.

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

C
on

te
xt

 M
en

u
Ta

bl
e

V
ie

w
er

Tr
ee

 V
ie

w
er

Ti
m

er
D

B
 C

on
ne

ct
io

n
C

ar
d

La
yo

ut
S

ha
pe

N
av

ig
at

e
A

rra
y

M
ov

in
g

S
ha

pe
G

en
er

ic
 In

te
rfa

ce
P

rio
rit

y
Q

ue
ue

C
om

bo
 B

ox
Ve

ct
or

D
ia

lo
g

TC
P

 C
on

ne
ct

io
n

La
be

l
P

ro
gr

es
s

B
ar

R
ad

io
 B

ut
to

n
H

as
hm

ap
S

ta
ck

G
ra

ph
Th

re
ad

N
um

be
r o

f .
N

et
 E

xa
m

pl
e

A
pp

lic
at

io
ns

0
5

10
15

20

(a) The number of example applications

C
on

te
xt

 M
en

u
Ta

bl
e

V
ie

w
er

Tr
ee

 V
ie

w
er

Ti
m

er
D

B
 C

on
ne

ct
io

n
C

ar
d

La
yo

ut
S

ha
pe

N
av

ig
at

e
A

rra
y

M
ov

in
g

S
ha

pe
G

en
er

ic
 In

te
rfa

ce
P

rio
rit

y
Q

ue
ue

C
om

bo
 B

ox
Ve

ct
or

D
ia

lo
g

TC
P

 C
on

ne
ct

io
n

La
be

l
P

ro
gr

es
s

B
ar

R
ad

io
 B

ut
to

n
H

as
hm

ap
S

ta
ck

G
ra

ph
Th

re
ad

P
re

ci
si

on
 fo

r .
N

et
 F

ra
m

ew
or

k

0
20

40
60

80
10

0

(b) The precision for different concepts

Fig. 7. The precision and the number of retrieved example applications from the SourceForge for the Microsoft .Net framework.

C
on

te
xt

 M
en

u
Ta

bl
e

V
ie

w
er

Tr
ee

 V
ie

w
er

Ti
m

er
D

B
 C

on
ne

ct
io

n
C

ar
d

La
yo

ut
S

ha
pe

N
av

ig
at

e
A

rra
y

M
ov

in
g

S
ha

pe
G

en
er

ic
 In

te
rfa

ce
P

rio
rit

y
Q

ue
ue

C
om

bo
 B

ox
Ve

ct
or

D
ia

lo
g

TC
P

 C
on

ne
ct

io
n

La
be

l
P

ro
gr

es
s

B
ar

R
ad

io
 B

ut
to

n
H

as
hm

ap
S

ta
ck

G
ra

ph
Th

re
ad

N
um

be
r o

f Q
t E

xa
m

pl
e

A
pp

lic
at

io
ns

0
2

4
6

8
10

12
14

(a) The number of example applications

C
on

te
xt

 M
en

u
Ta

bl
e

V
ie

w
er

Tr
ee

 V
ie

w
er

Ti
m

er
D

B
 C

on
ne

ct
io

n
C

ar
d

La
yo

ut
S

ha
pe

N
av

ig
at

e
A

rra
y

M
ov

in
g

S
ha

pe
G

en
er

ic
 In

te
rfa

ce
P

rio
rit

y
Q

ue
ue

C
om

bo
 B

ox
Ve

ct
or

D
ia

lo
g

TC
P

 C
on

ne
ct

io
n

La
be

l
P

ro
gr

es
s

B
ar

R
ad

io
 B

ut
to

n
H

as
hm

ap
S

ta
ck

G
ra

ph
Th

re
ad

P
re

ci
si

on
 fo

r Q
t F

ra
m

ew
or

ks

0
20

40
60

80
10

0

(b) The precision for different concepts

Fig. 8. The precision and the number of retrieved example applications from the SourceForge for different concepts for the Qt framework.

C
on

te
xt

 M
en

u
Ta

bl
e

V
ie

w
er

Tr
ee

 V
ie

w
er

Ti
m

er
D

B
 C

on
ne

ct
io

n
C

ar
d

La
yo

ut
S

ha
pe

N
av

ig
at

e
A

rra
y

M
ov

in
g

S
ha

pe
G

en
er

ic
 In

te
rfa

ce
P

rio
rit

y
Q

ue
ue

C
om

bo
 B

ox
Ve

ct
or

D
ia

lo
g

TC
P

 C
on

ne
ct

io
n

La
be

l
P

ro
gr

es
s

B
ar

R
ad

io
 B

ut
to

n
H

as
hm

ap
S

ta
ck

G
ra

ph
Th

re
adN
um

be
r o

f J
av

a
S

w
in

g
E

xa
m

pl
e

A
pp

lic
at

io
ns

0
2

4
6

8
10

(a) The number of example applications

C
on

te
xt

 M
en

u
Ta

bl
e

V
ie

w
er

Tr
ee

 V
ie

w
er

Ti
m

er
D

B
 C

on
ne

ct
io

n
C

ar
d

La
yo

ut
S

ha
pe

N
av

ig
at

e
A

rra
y

M
ov

in
g

S
ha

pe
G

en
er

ic
 In

te
rfa

ce
P

rio
rit

y
Q

ue
ue

C
om

bo
 B

ox
Ve

ct
or

D
ia

lo
g

TC
P

 C
on

ne
ct

io
n

La
be

l
P

ro
gr

es
s

B
ar

R
ad

io
 B

ut
to

n
H

as
hm

ap
S

ta
ck

G
ra

ph
Th

re
ad

P
re

ci
si

on
 fo

r J
av

a
S

w
in

g
Fr

am
ew

or
k

0
20

40
60

80
10

0

(b) The precision for different concepts

Fig. 9. The precision and the number of retrieved example applications from the SourceForge for different concepts for the Java Swing framework.

The precision of results. As mentioned before, Figs. 7, 8 and 9 show

that EXAF was able to find an overall of 139, 99, and 77 sample ap-

plications for the concepts listed in Table 1 on top of the .Net, Qt,

and Java Swing frameworks respectively. For these frameworks, the

precisions of results were 81.71%, 82.83%, and 79.22% respectively.

In particular, as illustrated in Fig. 7 b, EXAF achieves a precision of

100% in finding sample applications for 7, 12, and 9 of the concepts

listed in Table 1 on top of the .Net, Qt, and Java Swing frameworks

respectively. These promising results are mainly because of the fact

that EXAF takes into account the comments and reviews as a key

in finding proper example applications, and also benefits from the

LSI information retrieval technique.

A case study on the Google code. What presented so far in this sec-

tion, shows the results of our evaluations of applying EXAF on the

SourceForge. To have a more comprehensive view of how effective

the EXAF is in practice, we applied EXAF on the Google Code with

a smaller number of crawled projects (i.e., 1,632 projects). To save

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

Fig. 10. Comparing the average precision of results of EXAF with the average precision of results of other search engines in finding sample applications for the concepts

listed in Table 1 .

space, in the following, we briefly provide the final results of this

experiment as well.

After following the same steps of our experiment with the

SourceForge, we achieved the following results: EXAF found 29 ex-

ample applications for the concepts listed in Table 1 on top of the

.Net framework with a precision of 79.34%, 24 example applica-

tions on top of the Qt framework with a precision of 87.5%, and 21

example applications on top of the Java Swing framework with a

precision of 81%.

Comparing EXAF with other search engines. In this section, we com-

pare the results of applying EXAF to SourceForge and Google Code,

with the results of applying general-purpose search engines of

Google, Yahoo, and Bing to them. We also compare the results of

EXAF with the results of search engines incorporated in Source-

Forge and Google Code themselves. As the number of retrieved re-

sults using these engines is often vast and numerous, and based

on the fact that most of the users are interested in the first few

results [38] , we calculated the precision for the first 10 results of

each of these engines. To perform the search for each concept, we

created our query using the name of that concept plus the name

of the desired framework. Additionally, for general-purpose search

engines of Google, Yahoo, and Bing, we limited the results once to

those found in the Google Code and once, to those found in the

SourceForge.

Fig. 10 presents the results of comparing EXAF with other

search engines. As illustrated in this figure, EXAF works better than

the above five search engines in terms of the precision of results.

We noticed in our evaluations that the main reasons for these im-

provements are: (i) general-purpose search engines are not partic-

ularly provided to find sample applications for framework-provided

concepts; (ii) in many cases, they refer to available documentation

in sample projects while most of the times, the desired concepts

are not necessarily discussed in them; and (iii) different results of

a query may include different parts of the same project which can

hinder the precision of results.

5.4. Threats to validity

In the following, we discuss the threats that may influence the

validity of the experiment results, presented in the preceding sec-

tions.

5.4.1. Internal validity

Internal validity relates to the extent to which the design and

analysis may have been compromised by the existence of con-

founding variables and other unexpected sources of bias [39] .

One of the threats to internal validity concerns our selection

of artifacts that we take into account in EXAF to look for rele-

vant sample applications. For instance, we could have asked users

to provide us the API elements that they think might be relevant

to their desired concepts. Taking into account more artifacts may

improve the search results. Nevertheless, as mentioned before, we

assume that the user is not familiar enough with the target frame-

work, and that there are not enough documentation and guides

available describing how to implement a desired concept on top of

that framework. Hence, to make EXAF more applicable and simpler,

we prefer not to use other artifacts.

Another threat to internal validity relates to our selection of

software projects hosting sites, i.e., SourceForge and Google Code,

that can influence the results of our evaluations. We chose these

two sites because of their number of projects and popularity. How-

ever, there are many other software projects repositories, such as

GitHub, that could have been considered in EXAF too.

5.4.2. External validity

External validity relates to the extent to which the research

questions capture the objectives of the research and the extent to

which any conclusions can be generalized [39] .

One of the threats to external validity is that the frameworks

we used in our evaluations are not representatives of those used

in realistic development. However, we addressed this threat by se-

lecting three large and complex frameworks with various proper-

ties, i.e., .Net, Qt, and Java Swing, that are widely used in practice.

However, it is still useful to perform the evaluations with other

frameworks as well.

Another threat to external validity is that the concepts selected

for our evaluations might not be representatives of real-world

problems. We addressed this threat by selecting real-world con-

cepts from developer forums.

As pointed out earlier in Sections 1 and 2 , EXAF was originally

developed as a complement of our earlier work on FUDA. More

specifically, EXAF automates the FUDA’s manual step of finding

sample applications, and thus, users can benefit from both of these

tools together to learn how to implement a particular concept

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

on top of a desired object-oriented application framework. Conse-

quently, we introduced EXAF in this article as a search engine for

sample applications of object-oriented framework-provided con-

cepts. However, if a user wants to benefit from EXAF independently

from FUDA, it works independently of any programming paradigm

since it textually searches through various artifacts of a software

project like user reviews and bug reports.

In the descriptions of most of the applications available in soft-

ware projects repositories like SourceForge and Google Code, there

is typically no description about what concepts they implement.

Therefore, to find out whether an application implements a par-

ticular concept or not, EXAF searches through the comments, feed-

backs, reviews, feature requests, and bug reports of that application

as well. Therefore, EXAF might not be that helpful if a software

projects repository does not include these artifacts about an appli-

cation. Moreover, if a software projects repository which is used

with EXAF does not have any sample applications implementing a

desired concept, EXAF would not return any results.

5.4.3. Construct validity

The test of construct validity questions whether the theoreti-

cal constructs are interpreted and measured correctly [39] . In our

evaluations, the main threat to construct validity is related to mea-

suring the precision of results. In practice, only the actual user can

state if the retrieved sample application is useful. This threat is

minimized by inspecting the retrieved sample applications and cal-

culating the precisions by two expert developers.

Another threat to construct validity is that we do not measure

the recall of results which is the fraction of relevant instances that

are retrieved. The reason for this is that there are a large num-

ber of applications in Google Code and SourceForge. Therefore, as

we do not know the exact number of relevant sample applications

in them, we just computed the precision of results. Furthermore,

typically, one or two sample applications would suffice for devel-

opers to learn how to implement a desired concept, and thus, it is

not required to retrieve all relevant sample applications from those

sites.

5.4.4. Reliability

To implement EXAF, we customized the Apache powerful set

of open source tools. We built our LSI corpus using the Stack

Overflow discussions. We also conducted our experiments on the

SourceForge and Google Code which are publicly available. Hence,

all the resources we used in our evaluations are available online.

Consequently, it should be possible to replicate the evaluations.

6. Related work

This section provides an overview of related work in the areas

of (i) recommendation systems, (ii) code search engines, and (iii)

general-purpose search engines.

6.1. Recommendation systems

Recommendation systems help developers during programming

tasks at hand via recommending relevant items from a repository

of programming artifacts like code snippets, discussions, documen-

tation, and so on [40] . There are two main approaches that are

commonly used by available recommendation systems: code based,

and non-code based ones [41] . Code based recommendation sys-

tems make their recommendations with respect to the source code

(e.g., API calls [42,43]). On the other hand, non-code based rec-

ommendation systems consider other artifacts, such as textual de-

scriptions [44] .

There is a large body of work that statically mine the source

codes of existing example applications of a particular framework to

recommend code snippets and usage rules of that framework’s API.

For instance, Strathcona [45] , XSnippet [46] , FrUiT [42] , MAPO [43] ,

ParseWeb [47] , Spotweb [48] , EasySearch [10] , CodeBroker [49,50] ,

and Hipikat [11] are examples of this category of approaches.

Both Strathcona and XSnippet are context-sensitive code as-

sistants in which with respect to the programming task at

hand, relevant code snippets from a repository of sample ap-

plications are recommended to the programmer. Similarly, FrUiT

mines frequent API usage patterns in the form of association rules

(e.g., CallMethodA ⇒ CallMethodB) to suggest relevant implementa-

tion steps. MAPO searches open source repositories using a user-

defined query characterizing an API by a method, class, or package.

It then applies data mining techniques to extract patterns of se-

quential method calls. PARSEWeb mines for a sequence of calls that

transform an object of type τ in into another object of type τ out .

SpotWeb mines sample applications to determine the hot-spots and

cold-spots of a framework API. Hot-spots are defined as frequently

used API methods and classes, but the cold-spots are API meth-

ods and classes that are rarely used in client applications. Thung

et al. propose an automated approach in [44] that takes as input a

textual description of a feature request. It then recommends meth-

ods in library APIs that developers can use to implement that fea-

ture. EasySearch is an approach that combines keyword-based and

semantic-based searches to find relevant API functions. For this

purpose, it mines the structure and contents of API documenta-

tion. CodeBroker automatically recommends program components

for reuse with respect to the programming task at hand and the

background knowledge of the developer. Finally, Hipikat intends

to help newcomers to an open-source project become productive

faster. To this end, it forms an implicit group memory from the in-

formation stored in a project’s archives. It then recommends arti-

facts from the archives that are relevant to a task which that new-

comer is trying to perform.

Recommendation systems mainly depend on the knowledge of

users about the frameworks APIs and the availability of documents

and guides. Lack of documentation and the low level of knowl-

edge of developers are the main challenges for these works. Nev-

ertheless, EXAF reduces the risk of lack of knowledge by expand-

ing the keywords and it is independent from any documentation.

Moreover, EXAF finds a complete sample program for the desired

concept while these approaches recommend fine-grained API el-

ements. Moreover, our proposed approach can significantly help

our earlier work on FUDA. FUDA is a semi-automated technique

for automatic extraction of concept implementation templates from

traces of sample applications collected at runtime while invoking

the desired concept. A concept implementation template is a code

snippet that summarizes the implementation steps that are neces-

sary to instantiate that concept. Thus, developers can use EXAF to

find relevant sample applications implementing a desired concept.

Then, they can apply the FUDA technique on those sample appli-

cations to generate a code snippet that implements that particular

concept.

6.2. Code search engines

There are a number of search engines that are developed to par-

ticularly search for desired source codes. Examples of this category

of approaches include Exemplar [12] , Assieme [51] , CodeGenie [13] ,

XFinder [52] , SNIFF [53] , S 6 [54] , MUSE [55] , Mica [56] , and Satsy

[57] .

Exemplar is a search engine that combines a natural language

query from the user and the API calls executed by an application to

search for relevant applications that implement a desired concept.

However, unlike EXAF that applies the LSI technique to extend the

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

user-provided keywords, and also searches in various artifacts of

a project (e.g., code comments), Exemplar only takes into account

the API calls made by that project.

Assieme is a special purpose Web search engine with which

users can search for specific API elements to get more informa-

tion about them or to get sample code snippets about the usages

of those API elements. Therefore, unlike EXAF that looks for sample

applications implementing coarse-grained concepts, Assieme looks

for sample code snippets of fine-grained API elements.

With CodeGenie, programmers first design test cases for a fea-

ture of interest. Next, CodeGenie automatically searches for a sam-

ple implementation based on the information available in those

test cases. However, EXAF does not need developers to design such

test cases. Furthermore, designing these test cases can be a chal-

lenging task, particularly when the application for which we want

to design those test cases is not at our hand.

Given a concept implementation template written in Mismar

[58] , XFinder looks for instances of this template in its code base.

Mismar is a concept-oriented documentation toolset that focuses

on code artifacts and their relationships. Unlike this approach,

EXAF does not need high-level documentation of the concept that

a developer is looking for its sample applications.

SNIFF uses the documentation of the framework methods to

add plain English annotations to undocumented methods in exam-

ple applications of that framework. The annotated applications are

then indexed for the purpose of free-form query search. However,

unlike EXAF, this technique would not work when the documenta-

tion of the framework is not available.

S 6 is a code search engine that uses a set of user-guided pro-

gram transformations to map high-level queries into a subset of

relevant code fragments, not complete applications. Like EXAF, S 6

returns source code, however, it requires additional low-level de-

tails from the user, such as data types of test cases.

MUSE [55] parses the source code of the projects, and em-

ploys static slicing and clone detection to find example applica-

tions. However, EXAF uses textual artifacts, such as project descrip-

tions, comments, and reviews to find proper sample applications.

Given a description of a desired functionality, Mica helps pro-

grammers find the right API classes and methods. For this pur-

pose, Mica uses the Google Web APIs to find relevant pages, and

then analyzes the content of those pages to extract the most rel-

evant programming terms and to classify the type of each result.

Mica also helps developers find examples when they already know

which methods to use. Hence, unlike EXAF that searches in code

repositories, Mica benefits from the Google general-purpose search

engine and performs a general Web search.

In Satsy, programmers use an input/output query model to

specify what behavior they want instead of how it may be imple-

mented. Satsy includes a code repository in which programs are

encoded as constraints, and applies an SMT solver to find encoded

programs that match the input/output query. Satsy returns a list

of source code snippets that match the specification. Therefore, in

contrast to EXAF which looks for sample implementations of a de-

sired concept, Satsy focuses on the behavior of programs regardless

of how they implement the functionalities.

6.3. General-purpose search engines

General-purpose search engines are designed to search for in-

formation on the Internet (world wide web). Examples of this cat-

egory of approaches include Google 9 , Bing 10 , and Yahoo 11 .

9 http://www.google.com
10 http://www.bing.com
11 http://www.yahoo.com

General-purpose search engines are not particularly developed

to search for relevant sample applications. Therefore, they not only

search the source codes of sample applications available online,

but also they search many other artifacts, like photos, raw texts,

hypertexts, and books. Therefore, their suggested results cover a

wide range of irrelevant artifacts. Hence, for finding relevant sam-

ple applications, users need to filter out irrelevant results manu-

ally which can be a tedious and time-consuming task. Neverthe-

less, EXAF makes it very easy for the users by suggesting only the

sample applications that implement their required concepts.

7. Conclusions

Object-oriented application frameworks enable the reuse of de-

sign and code, and thus, make developing new applications sim-

pler while improving their maintainability. Framework-based appli-

cations are developed by writing application code that instantiates

framework-provided concepts. However, the APIs of modern frame-

works are often large and complex, and suffer from the lack of

proper documentation. To address these issues, programmers usu-

ally use existing sample applications as a guide to learn how to

implement a particular concept. However, finding proper sample

applications can be a cumbersome task. To address this difficulty,

in this article, we introduced EXAF , that looks for relevant sample

applications that implement a desired concept in software projects

hosting sites like SourceForge and Google Code.

In EXAF, developers describe their desired concept in natural

languages by a number of keywords. EXAF then expands those key-

words by applying the LSI information retrieval technique. It then

searches through the descriptions, bug reports, comments, reviews,

feedbacks, and other artifacts of applications in software projects

repositories to find example applications implementing the desired

concept. EXAF ranks the results next with respect to their rele-

vancy and presents them to the user.

We implemented EXAF as an Eclipse plugin and evaluated it

with 24 real-world concepts on top of the .Net, Qt, and Java

Swing frameworks. We noticed that EXAF has a precision of more

than 79% and performs better than general-purpose search engines

and also the code search engines integrated with SourceForge and

Google Code.

In future, we plan to evaluate EXAF further with more frame-

works and concepts. Moreover, we want to make EXAF publicly

available as a website. In addition, it would be interesting to de-

velop a tool that integrates both approaches of FUDA and EXAF

to further help developers in getting concept-implementation tem-

plates automatically.

References

[1] W.B. Frakes , K. Kang , Software reuse research: status and future, IEEE Trans.
Softw. Eng. 31 (7) (2005) 529–536 .

[2] R. Keswani , S. Joshi , A. Jatain , Software reuse in practice, in: Proceedings of
the 4th International Conference on Advanced Computing & Communication

Technologies, IEEE, 2014, pp. 159–162 .
[3] T. Scheller , E. Kühn , Automated measurement of API usability: the API concepts

framework, Inf. Softw. Technol. 61 (5) (2015) 145–162 .

[4] A. Heydarnoori , Supporting Framework Use via Automatically Extracted Con-
cept-Implementation Templates, University of Waterloo, Canada, 2009 (Ph.D.

thesis) .
[5] A. Heydarnoori , K. Czarnecki , W. Binder , T.T. Bartolomei , Two studies of frame-

work-usage templates extracted from dynamic traces, IEEE Trans. Softw. Eng.
38 (6) (2012) 1464–1487 .

[6] A. Heydarnoori , K. Czarnecki , T.T. Bartolomei , Supporting framework use via
automatically extracted concept-implementation templates, in: Proceedings of

the 23rd European Conference on Object-Oriented Programming, in: vol. 5653

of Lecture Notes in Computer Science, Springer, Berlin Heidelberg, Germany,
2009, pp. 344–368 .

[7] J.L.C. Izquierdo , F. Jouault , J. Cabot , J.G. Molina , API2MoL: automating the build-
ing of bridges between APIs and model-driven engineering, Inf. Softw. Technol.

54 (3) (2012) 257–273 .

E. Noei, A. Heydarnoori / Information and Software Technology 75 (2016) 135–147

[8] U. Dekel , J.D. Herbsleb , Improving API documentation usability with knowledge
pushing, in: Proceedings of the 31st International Conference on Software En-

gineering, IEEE, 2009, pp. 320–330 .
[9] E. Gamma , K. Beck , Contributing to Eclipse: Principles, Patterns, and Plug-ins,

Addison-Wesley Professional, Redwood City, CA, USA, 2004 .
[10] D.H. Tran , H.P. Nguyen , D.H. Le , EasySearch: finding relevant functions based

on API documentation, in: Knowledge and Systems Engineering, Springer In-
ternational Publishing, Switzerland, 2015, pp. 143–154 .

[11] D. Čubranic , G.C. Murphy , Hipikat: recommending pertinent software develop-

ment artifacts, in: Proceedings of the 25th International Conference on Soft-
ware Engineering, IEEE, 2003, pp. 408–418 .

[12] M. Grechanik , C. Fu , Q. Xie , C. McMillan , D. Poshyvanyk , C. Cumby , A search en-
gine for finding highly relevant applications, in: Proceedings of the 32nd Inter-

national Conference on Software Engineering, 1, IEEE/ACM, 2010, pp. 475–484 .

[13] O.A. Lazzarini Lemos , S.K. Bajracharya , J. Ossher , CodeGenie: a tool for test–

driven source code search, in: Companion to the 22nd Conference on Objec-
t-oriented Programming Systems and Applications, ACM, 2007, pp. 917–918 .

[14] M.P. Robillard , What makes APIs hard to learn? answers from developers, IEEE
Softw. 26 (6) (2009) 26–34 .

[15] E. Soloway , J.C. Spohrer , Studying the Novice Programmer, Psychology Press,
Hillsdale, NJ, USA, 2013 .

[16] T. Hofmann , Probabilistic latent semantic indexing, in: Proceedings of the 22nd

Annual International Conference on Research and Development in Information
Retrieval, ACM, 1999, pp. 50–57 .

[17] C. Fellbaum , WordNet, 1998 . Wiley Online Library.
[18] S.E. Robertson , S. Walker , M. Beaulieu , P. Willett , Okapi at TREC-7: automatic

ad hoc, filtering, VLC and interactive track, Nist Spec. Publ. SP (1999) 253–264 .

[19] H.P. Edmundson , New methods in automatic extracting, J. ACM (JACM) 16 (2)

(1969) 264–285 .
[20] Y. Tian , D. Lo , J. Lawall , Automated construction of a software-specific word

similarity database, in: Proceedings of the 2014 Conference on Software Main-
tenance, Reengineering and Reverse Engineering, IEEE, 2014a, pp. 44–53 .

[21] Y. Tian , D. Lo , J. Lawall , Sewordsim: software-specific word similarity database,
in: Companion Proceedings of the 36th International Conference on Software

Engineering, ACM, 2014b, pp. 568–571 .

[22] K. Taneja , D. Dig , T. Xie , Automated detection of api refactorings in libraries,
in: Proceedings of the 22nd IEEE/ACM international Conference on Automated

Software Engineering, ACM, 2007, pp. 377–380 .
[23] J. Sheard , A. Carbone , R. Lister , B. Simon , E. Thompson , J.L. Whalley , Going

SOLO to assess novice programmers, in: ACM SIGCSE Bulletin, 40, ACM, 2008,
pp. 209–213 .

[24] C. Kelleher , R. Pausch , Lowering the barriers to programming: a taxonomy

of programming environments and languages for novice programmers, ACM
Comput. Surv. (CSUR) 37 (2) (2005) 83–137 .

[25] M. Pedroni , T. Bay , M. Oriol , A. Pedroni , Open source projects in programming
courses, ACM SIGCSE Bull. 39 (1) (2007) 454–458 .

[26] Z. Shi , J. Keung , Q. Song , An empirical study of BM25 and BM25F based fea-
ture location techniques, in: Proceedings of the International Workshop on

Innovative Software Development Methodologies and Practices, ACM, 2014,
pp. 106–114 .

[27] EXAF, 2016. http://noei.bitbucket.org/EXAF/.

[28] W.J. Wilbur, K. Sirotkin, The automatic identification of stop words, J. Inf. Sci.

18 (1) (1992) 45–55 .

[29] D. Jurgens , K. Stevens , The s-space package: an open source package for word
space models, in: Proceedings of the ACL 2010 System Demonstrations, Asso-

ciation for Computational Linguistics, 2010, pp. 30–35 .
[30] R.B. Bradford , An empirical study of required dimensionality for large-scale la-

tent semantic indexing applications, in: Proceedings of the 17th Conference on

Information and Knowledge Management, ACM, 2008, pp. 153–162 .
[31] Z. Laliwala , A. Shaikh , Web Crawling and Data Mining with Apache Nutch,

Packt Publishing, Birmingham, UK, 2013 .
[32] P. Willett , The porter stemming algorithm: then and now, Program 40 (3)

(2006) 219–223 .
[33] H.V. Karambelkar , Scaling Apache Solr, Packt Publishing Ltd, 2014 .

[34] Most popular web application frameworks, (http://www.hurricanesoftwares.
com/most- popular- web- application- frameworks/).

[35] T. Thai , H. Lam , .NET Framework Essentials, O’Reilly Media Inc., Sebastopol, CA,
USA, 2003 .

[36] J. Blanchette , M. Summerfield , C++ GUI Programming with Qt 4, Prentice Hall
Professional, Westford, MA, USA, 2006 .

[37] D.M. Geary , Graphic Java 2: Mastering the JFC, Prentice Hall, Palo Alto, CA,
USA, 1999 .

[38] 53 percent of organic search clicks go to first link, (http://searchenginewatch.

com/sew/study/2215868/53- of- organic- search- clicks- go- to- first- link- study).
[39] S. Easterbrook , J. Singer , M.-A. Storey , D. Damian , Selecting empirical methods

for software engineering research, in: Guide to Advanced Empirical Software
Engineering, Springer, London, UK, 2007, pp. 285–311 .

[40] M.P. Robillard , W. Maalej , R.J. Walker , T. Zimmermann , Recommendation Sys-
tems in Software Engineering, Springer, Berlin Heidelberg, Germany, 2014 .

[41] M.-A. Storey , Theories, tools and research methods in program comprehension:

past, present and future, Softw. Qual. J. 14 (3) (2006) 187–208 .
[42] C. McMillan , M. Grechanik , D. Poshyvanyk , Q. Xie , C. Fu , Portfolio: finding rele-

vant functions and their usage, in: Proceedings of the 33rd International Con-
ference on Software Engineering, IEEE, 2011, pp. 111–120 .

[43] H. Zhong , T. Xie , L. Zhang , J. Pei , H. Mei , MAPO: mining and recommending
API usage patterns, in: Proceedings of the 23rd European Conference on Objec-

t-Oriented Programming, in: vol. 5653 of Lecture Notes in Computer Science,

Springer, 2009, pp. 318–343 .
[44] F. Thung , S. Wang , D. Lo , J. Lawall , Automatic recommendation of API methods

from feature requests, in: Proceedings of the 28th International Conference on
Automated Software Engineering, IEEE, 2013, pp. 290–300 .

[45] R. Holmes , R.J. Walker , G.C. Murphy , Strathcona example recommendation tool,
ACM SIGSOFT Softw. Eng. Notes 30 (5) (2005) 237–240 .

[46] N. Sahavechaphan , K. Claypool , XSnippet: mining for sample code, ACM Sig-

plan Not. 41 (10) (2006) 413–430 .
[47] S. Thummalapenta , T. Xie , PARSEWeb: a programmer assistant for reusing open

source code on the web, in: Proceedings of the 22nd International Conference
on Automated Software Engineering, IEEE/ACM, 2007, pp. 204–213 .

[48] S. Thummalapenta , T. Xie , SpotWeb: detecting framework hotspots and
coldspots via mining open source code on the web, in: Proceedings of the 23rd

International Conference on Automated Software Engineering, IEEE/ACM, 2008,

pp. 327–336 .
[49] Y. Ye , G. Fischer , B. Reeves , Integrating active information delivery and reuse

repository systems, ACM SIGSOFT Softw. Eng. Notes 25 (6) (20 0 0) 60–68 .
[50] Y. Ye , G. Fischer , Supporting reuse by delivering task-relevant and personalized

information, in: Proceedings of the 24th International Conference on Software
Engineering, ACM, 2002, pp. 513–523 .

[51] R. Hoffmann , J. Fogarty , D.S. Weld , Assieme: finding and leveraging implicit

references in a web search interface for programmers, in: Proceedings of the
20th Annual Symposium on User Interface Software and Technology, ACM,

2007, pp. 13–22 .
[52] B. Dagenais , H. Ossher , Automatically locating framework extension examples,

in: Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, ACM, 2008, pp. 203–213 .

[53] S. Chatterjee , S. Juvekar , K. Sen , SNIFF: a search engine for java using free-form
queries, in: Proceedings of the 12th International Conference on Fundamental

Approaches to Software Engineering, Springer, 20 09, pp. 385–40 0 .

[54] S.P. Reiss , Semantics-based code search, in: Proceedings of the 31st Interna-
tional Conference on Software Engineering, IEEE, 2009, pp. 243–253 .

[55] L. Moreno , G. Bavota , M.D. Penta , R. Oliveto , A. Marcus , How can i use this
method? in: Proceedings of the 37th International Conference on Software En-

gineering, IEEE, 2015, pp. 880–890 .
[56] J. Stylos , B. Myers , et al. , Mica: a web-search tool for finding API components

and examples, in: Proceedings of the IEEE Symposium on Visual Languages

and Human-Centric Computing, IEEE, 2006, pp. 195–202 .
[57] K.T. Stolee , S. Elbaum , M.B. Dwyer , Code search with input/output queries:

generalizing, ranking, and assessment, J. of Sys. and Soft. 116 (2016) 35–48 .

[58] B. Dagenais , H. Ossher , Aiding evolution with concern-oriented guides, in: Pro-
ceedings of the 3rd Workshop on Linking Aspect Technology and Evolution,

ACM, 2007 .

