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Too Many User-Reviews!
What Should App Developers Look at First?

Ehsan Noei, Feng Zhang, and Ying Zou

Abstract—Due to the rapid growth in the number of mobile applications (apps) in the past few years, succeeding in mobile app markets
has become ruthless. Online app markets, such as Google Play Store, let users rate apps on a five-star scale and leave feedback. Given
the importance of high star-ratings to the success of an app, it is crucial to help developers find the key topics of user-reviews that are
significantly related to star-ratings of a given category. Having considered the key topics of user-reviews, app developers can narrow
down their effort to the user-reviews that matter to be addressed for receiving higher star-ratings. We study 4,193,549 user-reviews of 623
Android apps that were collected from Google Play Store in ten different categories. The results show that few key topics commonly exist
across categories, and each category has a specific set of key topics. We also evaluated the identified key topics with respect to the
changes that are made to each version of the apps for 19 months. We observed, for 77% of the apps, considering the key topics in the
next versions shares a significant relationship with increases in star-ratings.

Index Terms—Mobile application, Empirical study, Software release, User-review
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1 INTRODUCTION

MOBILE app markets, such as Google Play Store [1], are
immensely competitive for app developers [2]. Google

Play Store uses the star-rating mechanism to gather users’
feedback and ratings. By the star-rating mechanism, users
can rate each app from one star (the lowest) to five stars
(the highest). Star-ratings can influence the income of app
development companies [3], [4] as users rely on star-ratings
for choosing new apps to download [3]. With over three
million Android apps [5], [6], low rated apps usually cannot
survive in the competitive market of mobile apps.

A star-rating can be associated with a user-review. A
user-review is an informal piece of text without a predefined
structure [7] and could contain useful information, such as
bug reports, feature requests, and user experiences [7], [8].
Recent studies (e.g., [7], [8], [9], [10], [11]) have shown the
unavoidable importance of star-ratings and user-reviews in
success and profitability of apps.

Many studies have been conducted to summarize user-
reviews and classify them into meaningful groups [12]. For
example, Villarroel et al. [13] help app developers to improve
the release planning by classifying user-reviews into clusters
of bug reports and feature requests. Villarroel et al. [13] rank
clusters of user-reviews based on different metrics, such as
the number of user-reviews. However, we observe that the
number of user-reviews does not always share a significant
relationship with star-ratings. Iacob et al. [14] summarize the
topics of user-reviews which cover users’ complaints. Recent
work is subject to the context of a single or a few app(s).
However, none of the earlier work has specified a set of
topics with a broader view, i.e., category, that are statistically
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significantly related to star-ratings; while, every category
shares a specific set of characteristics and requirements [15].

We introduce the key topics which are the topics of user-
reviews that share a significant relationship with star-ratings.
For instance, we identify messages as a key topic of the
category of social. Example user-reviews are “Love this app.
Great to be able to check up on the site for my messages when I’m
on the go!”, “Wouldn’t let me read my messages so I uninstalled
it [...]”, and “It wont let me recieve messages or send them fix
it and i’ll rate 5 star again”. The above user-reviews show
users’ concerns regarding messages in the category of social.
Addressing all the issues that are reported in user-reviews is a
time-consuming task. Therefore, it is beneficial to understand
and consider the key topics for better managing time and
efforts in order to receive higher star-ratings.

For each category, we identify a set of key topics by
analyzing the contribution of each topic to the performance of
the model that is built with the star-ratings as the dependent
metric. For example, we find that speed, battery consumption,
and searching are the key topics of the category of travel and
local. Moreover, we observe that the most frequent topics
of each category are not necessarily the key topics of the
same category, i.e., all the most frequent topics do not share
a significant relationship with star-ratings. Furthermore, our
proposed approach needs minor human intervention to
identify the key topics.

We investigate a large number of user-reviews, i.e.,
4, 193, 549 user-reviews of 623 apps in ten different cate-
gories. With such a number of user-reviews, we conduct
a fine-grained analysis per topic on user-reviews and the
associated star-ratings for 19 months.

We evaluate the identified key topics based on the
reported changes of apps for 19 months. Release notes could
be a great indicator of the changes that are made to each app.
Johann et al. [16] reported a precision of up to 88% for app
descriptions in identifying app features. For each app, we
calculate the similarity score of the release notes with key
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Fig. 1: Overview of the study setup.

TABLE 1: List of the categories, followed by the number
of apps, initial number of user-reviews, and number of
consistent and informative user-reviews.

Category #Apps #User-reviews #Consistent #Informative
User-reviews User-reviews

Business 42 277,564 187,343 102,375
Communication 70 3,055,079 1,972,061 950,007
Health and Fitness 57 342,003 249,534 171,220
Media and Video 44 1,020,481 651,444 342,610
Photography 56 827,870 631,629 274,611
Productivity 67 1,271,049 925,077 438,505
Shopping 63 660,784 484,433 293,943
Social 99 2,739,505 1,712,657 953,311
Tools 76 1,476,290 1,019,811 477,804
Travel and Local 49 435,628 293,355 189,163

topics versus non-key topics. Higher star-ratings are received
when release notes are more similar to the key topics for 77%
of the subject apps.

Paper Organization. Section 2 describes the study setup.
Section 3 discusses the key topics identification method
and the identified key topics. In Section 4, we evaluate the
relationship between the key topics and changes in star-
ratings. Section 5 lists the potential threats to the validity
of this work. Section 6 discusses the related work. Finally,
Section 7 concludes the paper and provides the future
direction.

2 STUDY SETUP

Figure 1 shows an overview of the study setup. As shown in
Figure 1, we preprocess the user-reviews and release notes.
Then, we identify the topics of each user-review. After that,
we compute the metrics of the topics and identify the key
topics of each category. Finally, we evaluate the changes in
star-ratings with respect to release notes.

2.1 Data Source
We retrieve the user-reviews, app details, and release notes
from Google Play Store. Despite other existing platforms,
such as iOS and Windows platforms, Android has by far
the largest number of users [2]. Due to the processing time
for handling all the user-reviews in over thirty categories of
Google Play Store, we study ten categories. We randomly
selected ten categories to avoid introducing a bias towards a
specific set of categories, e.g., popular categories. The selected
categories are listed in Table 1. The distribution of the number
of user-reviews varies across the categories. Some categories,
such as communication and social, have a variety of popular
apps and users.

We implement a crawler to extract app details and the as-
sociated user-reviews on a daily basis. The crawler retrieves
all the new user-reviews and merges them into our database.
We ran the crawler from April 2014 to November 2015.
Initially, we retrieved 14, 241, 915 user-reviews for 2, 723
apps. To ensure that we have enough data to study the
evolution of star-ratings over time, we exclude 2, 100 apps
based on two criteria: (i) the apps that get updated less
than ten times during our study as we study the relation
of addressing the issues raised by the key topics with star-
ratings over time, and (ii) the apps that receive less than ten
user-reviews between each update to avoid the apps with
few user-reviews skew the findings [17], [18]. The numbers
of selected apps in each category are listed in Table 1. By
removing 2, 100 apps, the number of user-reviews decreased
from 14, 241, 915 to 12, 106, 253 (i.e., 15% of the initial user-
reviews excluded from our study). The numbers of releases
for all the apps are illustrated in Figure 2a.

2.2 Preprocessing Data
In this section, we explain the preprocessing steps, such as
applying natural language processing techniques.

2.2.1 Removing Non-English User-reviews
We filter out non-English user-reviews using Language
Detector [19]. We remove 468, 473 user-reviews (i.e., 4%)
that were written in a non-English language.

2.2.2 Filtering Out Inconsistent User-reviews
Google Play Store faces inconsistencies among the user-
reviews [7], [8]. For instance, two users who perceive the
same quality from the same app may give different star-
ratings based on their subjective experience. Some user-
reviews have negative content, but they are associated with
high star-rating, and vice versa. As an example, we found
“Absolutely terrible. Waste of time” associated with 5 stars.
The inconsistent user-reviews can affect the accuracy of
the findings. To identify the inconsistent user-reviews, we
compare star-ratings with sentiment scores [20] of user-
reviews.

Different sentiment analysis approaches may produce
different sentiment scores [21]. We evaluated two popular
tools [21], including SentiStrength [22] and Natural Language
Toolkit (NLTK) [23]. We manually investigated the output of
both SentiStrength and NLTK on a sample of user-reviews
with the size of 384, the confidence level of 95%, and
the confidence interval of 5. SentiStrength achieved 74%
correct sentiment scores, while NTLK achieved 62% correct
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Fig. 2: The number of versions and length of release notes
(i.e., the number of words) for all the apps during the 19-
month period of the study.

sentiment scores. Moreover, Thelwall et al. [22] show that
SentiStrength has an acceptable accuracy for texts and com-
ments in social media, such as 70.7% correct sentiment scores
for the YouTube comments. Having such a character makes
SentiStrength a good candidate to measure the sentiment
scores of user-reviews [24].

SentiStrength scores user-reviews between −5 and +5.
The most negative user-reviews receive −5, and the most
positive user-reviews receive +5. User-reviews with the score
of −1, 0, and +1 are considered as neutral user-reviews [22].
Any score above +1 is a positive sentiment score, and any
score below −1 is a negative sentiment score [22]. User-
reviews are associated with star-ratings between 1 and 5.
The majority of users do not download an app with an
average star-rating of less than three [6]. We count the star-
ratings of 3 as a neutral rating, any star-rating below 3 as a
negative rating, and any star-rating above 3 as a positive one.

We only consider the user-reviews with consistent sen-
timent scores and star-ratings to reduce the risk of having
inconsistent user-reviews skew the findings. In total, we iden-
tify 8, 127, 344 consistent user-reviews out of 11, 137, 780
user-reviews (i.e., 73% of all the retrieved user-reviews). The
total number of user-reviews and consistent user-reviews are
listed in Table 1.

2.2.3 Filtering Out Uninformative User-reviews
An uninformative user-review, such as “This app is OK”,
provides minor information for app developers [13], [25].
To filter out uninformative user-reviews, we rely on the
AR-MINER approach proposed by Chen et al. [25]. The AR-
MINER applies Expectation Maximization for Naïve Bayes
method [26] to build a classifier that distinguishes between
informative and uninformative user-reviews. In total, we
get 4, 193, 549 informative user-reviews (i.e., 52% of the
consistent user-reviews). The last column in Table 1 shows
the number of informative user-reviews.

2.2.4 Correcting Typos
Typos in user-reviews would disturb the analysis tech-
niques [27]. To reduce the risk of missing valuable infor-
mation in the user-reviews, we correct the typos using Jazzy

Spell Checker [28]. We apply Jazzy with a dictionary of
645, 289 English words.

We also replace the commonly used abbreviations and
informal messaging vocabularies with meaningful words.
We get the abbreviations and informal vocabularies from the
available online sources [29], [30]. For example, we replace
“gr8” with “great”.

2.2.5 Processing Natural Language
We apply natural language processing techniques [31] to
better identify the topics of user-reviews. We also apply
natural language processing on the release notes to better
evaluate the identified key topics. The lengths of the release
notes, in terms of the number of words, are illustrated in
Figure 2b. Release notes have a median of 43 words.
Coreference Resolution. Coreference happens when two or
more expressions refer to the same referent [32]. For instance,
suppose an example user-review: “I really like the pictures in
this app. They give me a more comprehensive view”. The second
sentence uses a pronoun (i.e., they). However, the machine
does not understand what does “they” refer to. We use the
Stanford deterministic coreference resolution [33] to resolve
the coreferences in the user-reviews. The above example will
be converted to “I really like the pictures in this app. The pictures
give me a more comprehensive view”.
Sentence Annotation. Some users write long user-reviews with
several concerns, such as listing the pros and cons in details,
in one single review. We use Stanford CoreNLP [31] to
fragment the user-reviews with several concerns into pieces.
Hence, each piece could share an independent concept.
Stanford CoreNLP annotates the words in user-reviews. It
produces the base forms of words and parts of speech. It
also identifies the structure of sentences in terms of words
and phrases dependencies. The two sentences in the example
above refer to the same concept that is “pictures”. If the
sentences did not share the same concern, we would have
fragmented them into two pieces. For example, “I can easily
search the product names. However, the app is a battery killer.” is
fragmented into two pieces of “I can easily search the product
names.” and “However, the app is a battery killer”. Therefore,
we can have each fragment with an independent subject.

2.2.6 Building Corpus
A text corpus is a large set of texts for statistical analyses, such
as topic modeling [34]. To build the corpus of fragments of
user-reviews, we normalize the user-reviews before applying
topic modeling, including removing the stop words [35],
removing the punctuations, and stemming the words [36].
We also normalize the release notes to better compare them
with the identified topics and evaluate the key topics.

2.3 Topic Modeling
Topic modeling techniques let us assign topics to each user-
review, so we can understand the topics that each user-
review is about. We use the Latent Dirichlet Allocation (LDA)
technique [37] to capture the topics of user-reviews. LDA
allows sets of observations to be described by unobserved
groups and determines the similar parts of data. Moreover,
Henriksson et al. [38] showed that LDA-based topic modeling
generates the best synonyms of words which is useful when
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TABLE 2: The identified topics of user-reviews.

# Topic Name Top Words Brief Description

T1 Advertisements ad, screen, remove, annoy, button Advertisement-related issues are along with this topic.
T2 Authentication Issues account, log, wrong, check, password More related to authentication process of an app.
T3 Battery Consumption battery, save, life, power, charge More about the issues of energy and battery consumption.
T4 Bug Reports star, problem, only, point, issue Users explain their problem, specially the bugs.
T5 Comparing Versions update, version, latest, free, upgrade Discussing different versions, such as free vs. full version.
T6 Connection call, voice, connect, contact, number The words are about calls and internet connections. quality.
T7 Device Compatibility phone, android, mobile, device, tablet Comparisons based on different devices are along with this topic.
T8 Feature Requests better, improve, perform, add, feature The verbs, such as “add”, are in this topic to request a feature.
T9 Language Support language, translate, English, speak Users discuss language issues, such as adding a specific language.
T10 Messages post, message, view, text, receive The words are more related to sending and receiving messages.
T11 Pictures photo, picture, edit, share, view Related to viewing, sharing, and processing pictures.
T12 Playing Audio & Video video, play, watch, player, quality The words are related to watching and playing audio & video.
T13 Praising Features well, perfect, proper, interesting, pretty User praise various features.
T14 Purchases deal, money, price, store, shop The words of this topic deal with purchasing and monetary issues.
T15 Repeating Issues time, every, day, try, long Adverbs of time can be seen in this topic.
T16 Searching google, search, map, find, locate Searching is the main concern in this topic.
T17 Social Networking people, meet, talk, chat, friend About connecting users to other people, such as friends.
T18 Speed slow, load, quick, fast, speed More related to speed of an app, a process, or a functionality.
T19 Storage file, data, manage, space, card The words are more about storage management.
T20 Task Tracking & Notifications help, track, activity, list, sync The words are related to tracking reminders, and notifications.
T21 Technical Support guy, support, hope, team, job User discuss and share issues regarding technical supports.
T22 User Interface screen, button, bar, interface, theme Issues and experiences about user interface.
T23 Web Browsing browser, open, speed, load, slow The words in this topic are more related to web browsing issues.

comparing key topics with release notes (See Section 4).
Latent parameters, such as the number of topics, need to be
set up first. The most important parameters are:

- α which is set up according to the distribution of topics.
- β is the distribution of word for each topic.
- θd is the distribution of topics for a document d.
- φt is the distribution of words that describe topics t.
- twd is the topic for wth word in document d.
- |N | is the number of topics.
- |W | is the number of words in the vocabulary.
- |w| is the number of words in each document.
- |Wd| is the total number of words in all documents.

More details about the LDA parameters can be found in
the work of Blei et al [37]. Panichella et al. [39] proposed an
approach to determine the optimal configuration of LDA for
software engineering tasks. Most of the parameters are calcu-
lated automatically with respect to the distribution of data
(i.e., words, documents, and topics) and input parameters
using JGIBBLDA [40] (i.e., the tool that we use to identify
the topics). We employ two approaches (i.e., Griffiths et
al. [41] and Cao et al. [42]) to identify the optimum number
of topics. The method of Griffiths et al. [41] compares the
likelihood of the topic models for each number of topics. The
best number of topics has the highest likelihood value. The
method of Cao et al. [42] investigates the optimum number
of topics in LDA based on the topic density. The approach
of Griffiths et al. suggests 15 as the optimum number of
topics. However, the approach of Cao et al. suggests 35 as
the optimum number of topics. Hence, the best guess would
be between 15 and 35. To avoid losing any potential topic,
we pick a safe approach by choosing the maximum of the
suggested numbers of topics (i.e., 35 topics).

We apply LDA with 2, 000 Gibbs sampling iterations [43].
Although more iteration is better, with 2, 000 iterations,
we can achieve a high accuracy with topic modeling [41],
[43]. The Gibbs sampling is a Markov chain Monte Carlo
algorithm [44] to acquire a sequence of observations. The

observations are approximated by a specified multivariate
probability distribution [45].

We manually analyze the identified topics with a help
of an external evaluator who is a graduate student in
software engineering. The external evaluator has over six
years experience in software and app development. We
discussed each topic with the external evaluator until we
reach an agreement. We merge the topics that have the same
or very close semantic meaning based on the words given
by the LDA and the associated user-reviews. We merge the
topics having considered the following criteria:
• Each topic is defined by a set of words. We compare

the words of each topic (especially the words appearing
more frequently for each topic). If the words have the
same semantic meaning, we merge them into one group.

• We also look into the user-reviews that are associated
with each topic, especially in the cases that the words
of each topic were not clear enough to understand
the meaning of the topics. If the user-reviews of each
topic are explaining the same concept, we merge them
together.

We list the final 23 topics in Table 2 followed by the five most
frequently appearing words from the output of LDA and a
brief description of each topic. Table 3 shows the frequency
of topics in each category.

2.4 Computing Metrics
We follow the Goal / Question / Metric (GQM) paradigm [46],
[47] to capture the metrics. We bring up nine questions to
quantify the user-reviews and corresponding topics. Then,
we identify the metrics that can be measured to address the
questions. We measure 27 metrics of user-reviews. Table 4
shows the GQM model and list of metrics.

2.4.1 Number of Releases
Khalid et al. [48] reported that many users complain about
app updates. Hence, the number of releases might affect
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TABLE 3: Distribution of the topics in different categories. Each number demonstrates the percentage of the corresponding
topic in each category.

# Topic Name Business Commu- Health and Media Photo- Produ- Shopping Social Tools Travel and
nication Fitness Video hraphy ctivity Local

T1 Advertisements 4% 4% 2% 4% 3% 3% 2% 4% 4% 2%
T2 Authentication Issues 2% 4% 1% 1% 1% 2% 2% 3% 1% 2%
T3 Battery Consumption 2% 1% 1% 1% 1% 18% 3% 1% 9% 2%
T4 Bug Reports 2% 2% 1% 2% 3% 2% 3% 4% 3% 4%
T5 Comparing Versions 6% 4% 2% 4% 2% 3% 3% 5% 6% 4%
T6 Connection 5% 14% 2% 6% 5% 4% 3% 7% 7% 3%
T7 Device Compatibility 8% 3% 2% 4% 3% 8% 2% 3% 7% 2%
T8 Feature Requests 10% 4% 2% 3% 5% 5% 2% 2% 4% 3%
T9 Language Support 1% 2% 1% 2% 3% 2% 1% 2% 3% 1%
T10 Messages 4% 12% 1% 2% 2% 2% 2% 10% 2% 2%
T11 Pictures 2% 1% 1% 1% 26% 1% 1% 4% 1% 1%
T12 Playing Audio & Video 1% 2% 1% 31% 4% 1% 1% 4% 2% 1%
T13 Praising Features 7% 7% 5% 6% 12% 8% 9% 11% 9% 5%
T14 Purchases 1% 1% 1% 1% 1% 1% 40% 1% 1% 6%
T15 Repeating Issues 1% 1% 3% 1% 2% 2% 3% 2% 2% 1%
T16 Searching 1% 1% 2% 1% 1% 1% 3% 1% 2% 33%
T17 Social Networking 2% 8% 1% 2% 3% 2% 3% 14% 2% 2%
T18 Speed 6% 5% 5% 6% 5% 5% 8% 8% 6% 9%
T19 Storage 8% 1% 1% 2% 2% 7% 1% 1% 5% 1%
T20 Task Tracking and Notifications 12% 4% 60% 3% 6% 12% 6% 4% 7% 9%
T21 Technical Support 5% 3% 2% 3% 3% 4% 2% 2% 5% 3%
T22 User Interface 6% 6% 4% 5% 5% 5% 2% 6% 7% 4%
T23 Web Browsing 3% 11% 1% 13% 3% 3% 2% 2% 5% 2%

TABLE 4: The GQM model to quantify the metrics of user-
reviews.

Goal: Quantifying the user-reviews and the associated topics.

Questions Metric #

How often each app gets released? Number of releases 1
What is the estimated amount of
information in each user-review
based on the identified topics?

Entropy of topics 1

How well is the users’ experience
with each topic?

Sentiment scores 6

How many users discuss the same
topic?

Number of user-reviews 2

What is the proportion of positive
and negative user-reviews?

Proportion of user-
reviews

2

How much information can be
extracted from the user-reviews?

Number of words and
sentences

12

What is the proportion of each
topic in the user-reviews?

Proportion of topics 1

How often does each topic appear
in the user-reviews?

Topic recurrence length 1

For how long does each topic
appear in the user-reviews?

Duration of topics 1

Total: 27

the user-reviews. For each app, we count the number of
releases during the period of our study (i.e., April 2014 to
November 2015).

2.4.2 Entropy of Topics
According to the Shannon entropy [49], entropy measures
the amount of information contained in user-reviews. We
measure the entropy of topics using Equation (1).

H(a) = −
n∑
i=1

Pra(Ti) · log(Pra(Ti)) (1)

In Equation (1), H(a) represents the entropy of an app a.
n shows the number of topics. Ti demonstrates the ith topic.
Pra(Ti) shows the probability of the occurring topic Ti
in user-reviews of the app a. We compute Pra(Ti) using
Equation (2).

Pra(Ti) =
ηa(Ti)

ηa
(2)

In Equation (2), ηa shows the number of user-reviews for
an app a, and ηa(Ti) represents the number of user-reviews
with the ith topic for the same app.

2.4.3 Sentiment Score of Topics
We use SentiStrength [20], [22] to measure the sentiment
scores of the topics for each fragment of user-reviews.
SentiStrength scores user-reviews by a quantitative value
between −5 and +5 from the most negative to the most
positive. For each app, we measure the statistical character-
istics of the sentiments scores, including the mean, median,
minimum, maximum, 1st quartile, and 3rd quartile of the
sentiment scores. Moreover, for each topic, we calculate the
number of negative and positive user-reviews. We also count
the proportion of negative and positive user-reviews.

2.4.4 Number of Words and Sentences
Sizes of user-reviews can implicitly show the helpfulness of
user-reviews [50]. As the number of words and sentences
increases, users might provide more information about a
specific topic. To calculate the sizes of user-reviews, we
count the number of words and sentences of each fragment
of user-reviews. We use Stanford Parser [51] and Stanford
Tokenizer [31] to count the number of words and sentences.
For each topic, we measure the mean, median, minimum,
maximum, 1st quartile, and 3rd quartile of the number of
words and sentences.
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Fig. 3: An example for computing the topic recurrence length.

2.4.5 Proportion of Topics
Some topics frequently appear in a specific category, while
some topics appear infrequently. For example, in the category
of shopping, users talk more about buying and purchasing than
watching videos. To capture the varying popularity of a topic,
we measure the proportion of each topic for each app.

2.4.6 Topic Recurrence Length
A topic can be hot in the past but off subject now. Inspired
by prior studies [52], [53], we introduce the topic recurrence
length metric to capture the consecutive occurrences of each
topic. We use the following equation to measure the topic
recurrence length of each topic for each app:

TRL(T ai ) = lcp(T ai ) · e 1
n ((P (Ta

i )+L(Ta
i )) (3)

For each app, we break the 19 months duration our study
into the periods between each release. In Equation (3), T ai
shows the ith topic of the user-reviews for an app a. n is the
total number of periods between the releases of an app a
during the period of our study. lcp is the longest consecutive
period of T ai with at least one user-review between each
release. P (T ai ) is the number of periods with at least one
user-review for a topic T ai . L(T ai ) is the last index of the
longest period.

We give an exponential effect to P (T ai ) as the emphasize
of TRL is on the recurrence of topics. As the recurrence
of a topic increase, TRL grows exponentially. Similarly, we
gave L(T ai ) the same effect. Figure 3 shows an example
for computing the topic recurrence length. Suppose that we
want to calculate the topic recurrence length of the ith topic
for an app a. Presume this app has updated and released
5 times during our study. Then, the number of periods
is 6. Let’s assume the distribution of the number of user-
reviews for each period is {40, 0, 350, 400, 80, 0}. For this
distribution, the longest consecutive period lcp(T ai ) = 3, the
number of periods with at least one user-review P (T ai ) = 4,
and the last index of the longest period is 5. Consequently,
TRL(T ai ) (i.e., the topic recurrence length) equals to 13.45
using equation (3). A greater value of TRL shows that the
topic had appeared more often. For example, a topic with a
TRL = 13.45 (as in the example above) recurs more often
than a topic having a TRL = 10.

2.4.7 Duration of Topics
During the lifetime of an app, some topics might appear
for a specific time but disappear from the user-reviews
later. For example, if an app suffers from battery drains, the
users might comment intensively on battery consumption
problems. After the problem being resolved, users may not
complain about battery issues anymore. Therefore, this topic
would disappear from the user-reviews. To measure the
duration of each topic, we calculate the difference between
the earliest and latest time of a continuous period with at
least one user-review regarding the same topic.

3 KEY TOPICS IDENTIFICATION

In this section, we describe the key topics identification
method and the identified key topics.

3.1 Method
Google Play Store reports the average of star-ratings as an
indicator of the overall star-rating of an app [1]. Similarly,
for each app, we investigate the relationship between the
average of star-ratings and the identified topics, such as user
interface and battery consumption. The independent metrics
are listed in Table 2.

3.1.1 Correlation Analysis
Having correlated metrics affects the stability of our models
negatively and makes it difficult to distinguish the impact of
the metrics [54]. We use the variable clustering analysis tech-
nique according to Spearman’s |ρ| > 0.7 [55] to investigate
the correlation between the explanatory metrics [56]. The
Spearman correlation evaluates the monotonic relationship
between continuous or ordinal metrics.

3.1.2 Computing Contribution of the Metrics
Proportional Marginal Variance Decomposition (PMVD) is
an approach that is based on sequential R2s. It averages
over orderings by using weighted averages with data-
dependent weights. Therefore, PMVD mitigates the risk
of dependence on the orderings of the metrics of topics. We
apply PMVD [57], [58] to detect the topics that give the
highest contributions to star-ratings.

For each topic, we measure a set of metrics as explained
in Section 2.4). Using PMVD, we group the metrics of each
topic together. Therefore, PMVD would be able to calculate
the contribution of each topic (i.e., each group of metrics)
on star-ratings. For simplicity, we explain the calculation of
PMVD for mtj

i (i.e., ith metric of jth topic) in Equation (4).
In this Equation, s is the set of understudy metrics and n
denotes the number of metrics in set s. r is a permutation of
metrics of set s. ω(m

tj
i |s) is the additional R2 when adding

the mtj
i to the model as shown in Equation (5). σ(s) is the

set of all n! permutations of metrics of set s. ρ(s) denotes
the data-dependent PMVD weights that is calculated using
Equation(6) [57].

PMVD(m
tj
i ) =

1

n!

∑
σ(s)

ρ(r)ω(m
tj
i |s) (4)

ω(m
tj
i s) = R2(m

tj
i s)−R

2(s) (5)
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TABLE 5: List of the key topics of each category. The key topics are sorted according to the PMVD scores (in parentheses).

Category Key Topics # Key Topics

Business Battery Consumption (0.33), Speed (0.31), Device Compatibility (0.25) 3
Communication Searching (0.58), Battery (0.11), Speed (0.08) 3
Health and Fitness Task Tracking and Notifications (0.43), Messages (0.21), Speed (0.08), Battery Consumption (0.05) 4
Media and Video Playing Audio & Video (0.71), Speed (0.19), Repeating Issues (0.06) 3

Photography Pictures (0.43), Advertisement (0.24), Searching (0.06), User Interface (0.06), Speed (0.05), 6Battery Consumption (0.05)

Productivity Pictures (0.20), Advertisements (0.12), Authentication Issues (0.12), Repeating Issues (0.07), 5Task Tracking and Notifications (0.07)
Shopping Searching (0.59), Bug Reports (0.10), Purchases (0.07) 3

Social Messages (0.15), User Interface (0.08), Comparing Versions (0.08), Social Networking (0.06), 6Pictures (0.06), Searching (0.05)
Tools Battery Consumption (0.24), Speed (0.23), Bug Reports (0.17), Language Support (0.12) 4
Travel and Local Searching (0.21), Battery Consumption (0.19), Advertisements (0.13), Speed (0.08) 4

Equation (6) shows an overview of computing the PMVD
weights. The weights have been derived from a set of axioms
(see Feldman [58]), such as the axiom of proper exclusion. The
axiom of proper exclusion makes an independent metric with
a coefficient 0 to have an R2 share of 0 [57]. In Equation (6),
σ(s) is the set of all n! permutations of metrics of set s. r is
a permutation of metrics in set s. ρ(r) shows the weight for
a list of metrics r. Γ(s) can be computed using Equation (7)
for a permutation r of the metrics of set s. In Equation (7),
mri is the ith metric of a permutation r of set s.

ρ(r) =
Γ(r)∑
σ(s) Γ(s)

(6)

Γ(r) =
n−1∏
i=1

ω(mri+1, ...,mrn|mr1, ...,mri)
−1 (7)

Using PMVD allows us to identify the likelihood of
independent metrics that are correctly ordered with respect
to their relative importance. We compute the expected
contribution of the metrics of each topic to the model
performance. We use the R package RELAIMPO [57] that
provides methods and metrics, such as the PVMD, for
examining relative importance in linear models. We group
the metrics of each topic together. PMVD gives the expected
contribution of each topic based on its group of metrics. We
mark a topic as a key topic when the expected contribution
of the metrics that describe the topic (i.e., the PMVD score)
is more than 0.05 [57].

3.2 Findings
The identified key topics are listed in Table 5. As shown
in Table 5, each category has its own set of key topics
that shares a significant relationship with star-ratings. For
instance, the key topics of the category of business are battery
consumption, speed, and device compatibility. Some categories,
such as business, have fewer key topics in comparison with
other categories. The categories of business, communication,
and shopping have only three key topics each, while the
categories of photography and social have the most number of
key topics with six key topics.

App developers should take care of the issues that are
related to the key topics of the category in which they publish
their apps to achieve higher star-ratings. App developers can
also refer to related work, such as Chen et al. [25], Villarroel et

al. [13], and Di Sorbo et al. [59], to identify the bug reports
and feature request that are reported in the user-reviews of
their own apps. Following our findings, they can focus on
the user-reviews that are related to the key topics to better
manage time, budget, and efforts.

We made some additional interesting observations, as
listed below, that can further help app developers:

1) For each category, some key topics have a higher rela-
tionship with star-ratings in comparison with the other
key topics. PMVD scores are listed in parentheses in
Table 5. PMVD scores are between 0 and 1 [57]. A higher
value of a PMVD score shows a higher contribution
to the performance of the model. For instance, in the
category of business, battery consumption and speed are
relatively more important than the issues related to
device compatibility. Hence, developers would be able to
prioritize the key topics.

2) By comparing the most frequent topics of each category
and the key topics of the same category, we find that
the key topics are not necessarily the most frequent topics
of the user-reviews (see Table 3). For example, in the
category of business, task tracking and notifications is more
frequent than other topics while it is not a key topic. This
is an interesting observation as developers are likely to
be distracted by the frequent topics that do not actually
share a significant relationship with star-ratings. The list
of our extracted key topics helps developers prioritize
the development efforts to address the issues that are
related to the key topics.

3) Although we study the relationship between a group of
metrics and star-ratings, highlighting the most signifi-
cant metrics can provide developers with more insights
into the important aspects. Table 6 shows the significant
metrics of each model. For example, the sentiment scores
of battery consumption (T3) and messages (T10) share
significant relationships with star-ratings in the category
of health and fitness.

4) Some key topics are shared by the majority of the
categories, while other key topics only appear in one
category, such as play audio & video in the category of
media and video. The most popular topic is speed which
appears in seven categories (i.e., business, communication,
health and fitness, media and video, photography, tools,
and travel and local). The common key topics should
be taken care of by the majority of app developers
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TABLE 6: The significant metrics of each category and the adjusted R2 of the model that is built for each category. The topics
are indexed in Table 2.

Category Significant Metrics Adjusted R2

Business T2(#Words), T3(Sentiment), T9(#Words) 0.93

Communication T3(Sentiment, #Sentences), T8(Sentiment), T9(Sentiment), T12(Sentiment), T14(#Sentences), 0.87
T16(Sentiment), T12(Sentiment), T20(#Sentences)

Health and Fitness T3(Sentiment), T10(Sentiment), T20(#Sentences), 0.73
Media and Video T1(Sentiment), T7(#Sentences), T8(#Sentences), T11(#Words), T12(Sentiment), T18(Sentiment) 0.94
Photography T1(Sentiment), T3(Negative Reviews%), T11(Sentiment), T18(Sentiment, #Words) 0.86
Productivity T2(#Negative Reviews), T11(Sentiment) 0.75

Shopping Entropy, T4(Sentiment), T19(#Sentences), T10(Sentiment), T16(Sentiment), T21(Sentiment), 0.90
T23(#Sentences)

Social T4(Sentiment), T9(#Sentences), T10(Sentiment), T16(Sentiment) 0.74
Tools T4(Sentiment) , T9(Sentiment, TRL), T16(Proportion), T18(Sentiment) 0.73
Travel and Local T1(Sentiment), T16(#Words) 0.82

and app development companies. For example, testing
companies should pay more attention to the issues that
are related to the common key topics.�

�
�
�

The key topics of each category are the topics of user-reviews
that share a significant relationship with star-ratings. The
key topics are not the most frequent topics of user-reviews.

4 EVALUATION

In this section, we evaluate the relationship between the
identified key topics and star-ratings. We check if the changes
in star-ratings after each release are related to the key topics.

4.1 Method
We follow the steps below to evaluate the identified key
topics for each category. For simplicity, let’s describe the
approach for the releases of an app, where releases is a
sample release of the app during the period of our study.

1) We calculate (i) the average of star-ratings that are
received after releases−1 and before releases, and (ii) the
average of star-ratings that are received after releases

and before releases+1. Then, we measure the difference
between the above averages (∆).

2) We identify the positive changes in star-ratings where
∆ > 0. Then, we calculate weighted cosine similarity [60]
between each release note and key topics versus non-key
topics. Release notes highlight the major updates in an
app [61]. We calculate the similarity using the words
in release notes and vectors of words that are extracted
by applying the topic modeling (see Section 2.3). We
get the similarity scores for the key topics (λks ) and non-
key topics (λ¬ks ). If λks > λ¬ks , then positive changes
are associated with a higher similarity score of the key
topics.

3) For each app, we build two vectors: (i) Λk for the key
topics (Equation (8)) and (ii) Λ¬k for the non-key topics
(Equation (9)).

Λk = {λkm, λkm+1, ..., λ
k
n} (8)

Λ¬k = {λ¬km , λ¬km+1, ..., λ
¬k
n } (9)

λki and λ¬ki are the similarity scores for the ith version
of the app. m ≤ i ≤ n where m is the oldest release and
n is the latest release of the app during our study.

4) Mann-Whitney U test [62] is a non-parametric test
to determine two datasets have the same distribution
without an assumption of the normality of datasets.
We compare Λk and Λ¬k using paired Mann-Whitney U
test [63]. As a null hypothesis, we assume that two λs are
similar. The Mann-Whitney U test rejects the hypothesis
with a p− value < 0.05 [62].

5) We group the apps into two groups: (i) one group where
there is a significant difference in the similarity scores
between the key topics and non-key topics (p-value<
0.05), and (ii) one group where there is no significant
difference in the similarity scores between the key topics
and non-key topics. If we observe a greater proportion
of apps in the first group, we can conclude that the
release notes that are related to the key topics are more
associated with positive changes in star-ratings.

In addition, we repeat the above steps considering the
negative changes in star-ratings (i.e., ∆ < 0). The goal is
to find out if the negative changes in star-ratings are also
related to the key topics.

4.2 Findings
First, we describe our findings regarding the positive changes
in star-ratings. Then, we explain our findings regarding the
negative changes.

4.2.1 Positive Changes
For 77% of the apps on average, having a similar release
note to the key topics shares a significant relationship
with increases in star-ratings. For each category, the second
column of Table 7 shows the proportion of apps with p-
values less than 0.05 (see step 5 of the evaluation method).
The last column of Table 7 shows the differences between
the average of the similarity scores for the key topics and
non-key topics.
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TABLE 7: Proportion of apps with significant differences.

Category p-value<0.05 p-value ≥ 0.05 Diff

Business 76% 24% +0.08
Communication 77% 23% +0.08
Health and Fitness 82% 18% +0.06
Media and Video 77% 23% +0.05
Photography 80% 20% +0.04
Productivity 67% 33% +0.02
Shopping 81% 19% +0.07
Social 67% 33% +0.04
Tools 87% 13% +0.05
Travel and Local 71% 29% +0.02

4.2.2 Negative Changes
By repeating the experiment considering the negative
changes in star-ratings, we observed that, for 26% of the
apps on average, there is a significant difference between
the key topics and non-key topics. To investigate the reasons
for the above observation, we randomly selected 384 user-
reviews of the cases where there is a decline in star-ratings.
We find two main reasons:

1) The changes related to the issue of the key topics
(reported in the release notes) could not satisfy users.
Consequently, the same issues are repeated in the user-
reviews of the next versions.

2) Developers make a change related to the key topics that
makes users unhappy. For example, the user interface is
a key topics for the category of social. We observed that
after a release note concerning the user interface: “We’ve
added a brand new notification center, so now you can choose
which items you get.”, star-ratings decreased. The users
were complaining about the new changes.

Developers should consider the key topics carefully for the
next releases to reduce the risk of receiving low star-ratings.�
�

�
�

For 77% of the apps on average, having a similar release note
to the key topics shares a statistically significant relationship
with positive changes in star-ratings.

5 THREATS TO VALIDITY

In this section, we discuss the potential threats to the validity
of our experiments and findings.

5.1 Internal
Regarding removing inconsistent user-reviews, we manually
analyzed the inconsistent user-reviews on a statistically
representative sample with the confidence level of 95%
and the confidence interval of 5 (i.e., 384 user-reviews). We
found that 78% are fake or inconsistent user-reviews. In the
evaluation section, we consider all the release notes of the
subject apps regardless of the user-reviews. Additionally, we
repeat the evaluation approach with an alternation where
we only consider the release notes that come after the
user-reviews that discuss a key topic. Even with the new
alternation in the experiment, we still observe increases in
star-ratings. In some cases that developers may conveniently
write phrases like “bug fixes” in the release notes, the key
topics of bug reports and feature requests would cover them.

However, such short release notes are not recommended [64].
Google Play Store does not provide access to all the user-
reviews. Hence, any analysis on the user-reviews might
encounter dealing with an incomplete set of data. Martin et
al. [65] observed that using an incomplete set of user-reviews
in Blackberry World app store introduces bias to the findings.
They conclude that using incomplete data in other app stores
may also bias the findings. To reduce such a bias on the
findings, we collect all the user-reviews (i.e., 14, 241, 915 user-
reviews) gradually during 19 months from April 1, 2014 to
October 31, 2015.

5.2 External
Threats to external validity concern the possibility to general-
ize the findings [66]. Due to the processing time for handling
all the user-reviews, we gather the user-reviews from ten
randomly selected categories. Therefore, our extracted key
topics are limited to the ten categories. However, future
research can follow our approach to mine the key topics for
other categories.

6 RELATED WORK

Considering the importance of crowdsourcing [67], the
number of studies that focus on the user-reviews is on
the rise [12]. Several papers have investigated the user-
reviews that are posted on mobile app markets. The goal
of such papers is to extract knowledge from a relatively
huge body of unstructured text to alleviate the process of
app maintenance and release [13], [25], [64], [68]. In this
section, we summarize the related work along two research
directions: (i) summarizing user-reviews and (ii) relating
user-reviews to source code.

6.1 Summarizing User-Reviews
Chen et al. [25] proposed a framework, called AR-MINER,
to identify and filter out uninformative user-reviews. They
employed textual analysis techniques to detect and rank
informative user-reviews. Using AR-MINER, we filter out
uninformative user-reviews from our study.

Panichella et al [69] used natural language processing, text
analysis, and sentiment analysis to classify the user-reviews
into five main intentions of users, including information
giving, information seeking, feature requests, problem dis-
covery, and others. Di Sorbo et al. [59] presented an approach,
called SURF, to summarize user-reviews of mobile apps.
Di Sorbo et al. [59] employ two levels of classification: (i)
intention classification [69], and (ii) topic classification. In
our work, we use automated techniques that can process
millions of user-reviews to summarize the topics.

Table 8 provides a comparison between the topics that are
extracted by Di Sorbo et al. [59] with our topics. We identified
23 topics of user-reviews. Our topics not only covers all the
topics that are discovered by Di Sorbo et al. [59] but also
considers a wider range of topics. As shown in Table 8, Di
Sorbo et al. [59] did not cover nine topics. According to our
results, not all the nine topics that are covered by Di Sorbo et
al. [59] appear as key topics.

Gu and Kim [70] classified user-reviews in five groups of
evaluation, praises, feature requests, bug reports, and others.
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TABLE 8: Comparison between the topics that are discovered
by Sorbo et al. [59] and our topics.

Topics by
Sorbo et al. [59] Our Topics

The Topics in Common
App Removed as uninformative user-reviews
GUI User interface

Contents We cover more specific topics, such as
pictures and social networking

Pricing Comparing versions
Features or
functionality Feature requests

Improvement Feature requests and bug reports
Updates/versions Comparing versions

Resources We have topics with finer grains, such as
battery consumption and storage

Security Authentication issues
Download Removed as uninformative user-reviews

Model Device compatibility and comparing
versions

Company Technical support
The Topics not in Common

Not Covered Advertisements
Not Covered Connection
Not Covered Language Support
Not Covered Messages
Not Covered Purchases
Not Covered Search
Not Covered Speed
Not Covered Task tracking and notifications
Not Covered Web browsing

They applied aspect opinion mining [71] and sentiment anal-
ysis to find the most popular features of an app. However,
their work did not reveal the relation of such features with
star-ratings.

Topic modeling is widely used in different domains, and
interesting results have been inferred [72]. Consequently,
some researchers rely on topic modeling technique [37],
[73] to summarize the user-reviews. For example, Iacob and
Harrison [74] and Guzman and Maalej [24] applied LDA on
user-reviews to extract feature requests. Fu et al. [8] proposed
an approach to analyze star-ratings and user-reviews. Similar
to our work, Fu et al. [8] crawled and retrieved a large
number of user-reviews too, i.e., 13, 286, 706 user-reviews.
None of the papers mentioned above have studied the
topics that share a significant relationship with star-ratings.
Although providing a summary of user-reviews is beneficial,
developers need to have an understanding of the key topics
to achieve higher star-ratings.

6.2 Relating User-Reviews to Source Code
Source code of the majority of mobile apps is not publicly
available which is a challenge for researchers. Ciurumelea et
al. [68] proposed an approach, called UUR, to organize user-
reviews with respect to users’ requests. Having the user-
reviews organized, they could recommend some source code
using code localization. Ciurumelea et al. [68] defined five
high-level topics: (i) compatibility which is covered by device
compatibility in our study, (ii) usage which is covered by
user interface and other topics, such as social networking, (iii)
resources which is covered by storage and battery consumption
topics, (iv) pricing which is covered by comparing versions, and
(v) protection which is covered by authentication issues in our
study. Palomba et al. [75] followed the approach proposed
by Panichella et al. [11] to classify user-reviews and map

them to source code. Palomba et al. [75] recommended the
source code changes required to address the user-reviews
by measuring the asymmetric Dice similarity coefficient [76]
between the words in user-reviews and the words in each
class of source code. Palomba et al. [7] studied 100 Android
apps to show that implementing users’ requests increases
star-ratings.

Discussion. Related work (e.g., [24], [25], [70], [75]) can
integrate the key topics into their approach in order to receive
higher star-ratings. When summarizing user-reviews [13],
[25], [59], paying attention to the key topics prevents dis-
tractions introduced by frequent topics that share a minor
relationship with star-ratings. For example, CLAP [13]
clusters user-reviews, then prioritizes the clustered user-
reviews. CLAP should give higher priority to the clusters
of user-reviews that are related to the key topics. Second,
our work can make a great contribution to the papers that
relate user-reviews to source code. For example, by having
the key topics in mind, developers can focus on the issues
that are needed to be addressed first for the next releases.
For example, CHANGEADVISOR [75] follows four major
steps to recommend changes in an app: (i) user-reviews
identification, (ii) processing source code, (iii) user-reviews
classification, and (iv) identifying changes. In the first step
(i.e., user-reviews identification), CHANGEADVISOR can give
the user-reviews that discuss the key-topics a higher priority;
thereby, higher priority of changes in the app. Future research
should thoroughly investigate all aspects of integrating the
key topics into related work, and changes in star-ratings
before and after considering the key topics.

7 CONCLUSION

In this paper, we identify the key topics on which the
developers should focus for the next releases. The identified
key topics provide app developers with a smaller subset
of user-reviews for investigation, rather than all the user-
reviews. We study the topics of 4, 193, 549 user-reviews from
Google Play Store that are collected in a 19 month period.
Our analysis is based on 623 Android apps in ten randomly
selected categories. We employ PMVD to find the key topics
of each category. We find that each category has a specific set
of key topics that are not necessarily the most frequent topics
of user-reviews. Considering the key topics is recommended
as they share a statistically significant relationship with star-
ratings. Finally, we evaluated our findings using release notes.
For 77% of the apps on average, having a similar release note
to the key topics shares a statistically significant relationship
with positive changes in star-ratings.

In the future, we will integrate the earlier work that sum-
marizes user-reviews with our approach. Thus, developers
would be able to prioritize and summarize future changes
by focusing on the identified key topics.
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