
Noname manuscript No.
(will be inserted by the editor)

Towards Prioritizing User-Related Issue Reports of
Mobile Applications

Ehsan Noei · Feng Zhang ·
Shaohua Wang · Ying Zou

Received: date / Accepted: date

Abstract The competitive market of mobile applications (apps) has driven
app developers to pay more attention to addressing the issues of mobile apps.
Prior studies have shown that addressing the issues that are reported in user-
reviews shares a statistically significant relationship with star-ratings. How-
ever, despite the prevalence and importance of user-reviews and issue reports
prioritization, no prior research has analyzed the relationship between issue re-
ports prioritization and star-ratings. In this paper, we integrate user-reviews
into the process of issue reports prioritization. We propose an approach to
map issue reports that are recorded in issue tracking systems to user-reviews.
Through an empirical study of 326 open-source Android apps, our approach
achieves a precision of 79% in matching user-reviews with issue reports. More-
over, we observe that prioritizing the issue reports that are related to user-
reviews shares a significant positive relationship with star-ratings. Further-
more, we use the top apps, in terms of star-ratings, to train a model for
prioritizing issue reports. It is a good practice to learn from the top apps as
there is no well-established approach for prioritizing issue reports. The results
show that mobile apps with a similar prioritization approach to our trained
model achieve higher star-ratings.

Ehsan Noei and Ying Zou
Department of Electrical and Computer Engineering, Queen’s University
E-mail: (e.noei, ying.zou)@queensu.ca

Feng Zhang
School of Computing, Queen’s University
E-mail: feng@cs.queensu.ca

Shaohua Wang
Department of Informatics, New Jersey Institute of Technology
E-mail: davidsw@njit.edu

2 Ehsan Noei et al.

1 Introduction

The revenue of Android applications (apps) has increased enormously in the
past few years (Statista (2017b); Stats (2016)). App markets, such as Google
Play Store (Google (2017); Statista (2017a)), are very competitive for app
developers. Google Play Store provides a scoring system where users can rate
apps from one star (the lowest star-rating) to five stars (the highest star-rating)
and post their comments (i.e., user-reviews). Star-ratings of apps can affect the
number of downloads and the income of app development companies (Bavota
et al (2015); Kim et al (2011)). The associated user-reviews to star-ratings can
contain valuable information, such as bug reports and feature requests (Iacob
and Harrison (2013); Panichella et al (2015)). Such information can be useful
for app developers to manage issues and demands of users to achieve higher
star-ratings.

Traditionally, issues are managed and prioritized through issue tracking
systems. Many mobile apps use GitHub (GitHub (2018a)) as an issue tracking
system to manage the issues that are reported by developers. It has been found
that addressing the issues that are reported in user-reviews can increase the
star-ratings (Palomba et al (2015)). However, there is no precise link between
the issue reports in issue tracking systems and the user-reviews on Google
Play Store. We propose a solution to establish a connection between issue
reports and user-reviews. The benefits of having a connection between user-
reviews and issue reports are twofold. First, developers can focus on the issue
reports that can increase the star-ratings of their apps. However, it is still
hard for app developers to decide which user-related issue report should be
addressed first. For instance, an issue that is reported by an expert developer
may receive high priority (Xuan et al (2012)), as well as an issue appearing in
many user-reviews. A resolution of various aspects is beneficial for prioritizing
issue reports. Second, app developers would identify the issues from the user-
reviews that have already been reported in the issue tracking system. Hence,
developers can avoid issue report duplications (Cavalcanti et al (2013)) if they
plan to add the issues that are reported in the user-reviews to the issue tracking
system.

Prior studies, such as Villarroel et al. (Villarroel et al (2016)) and Chen et
al. (Chen et al (2014)), only focus on user-reviews, but neglect the information
provided in issue tracking systems. The issue reports in issue tracking systems
include the results of developers’ efforts in identifying potential issues and
should not be neglected. Chen et al. (Chen et al (2014)) propose an approach to
extract the informative user-reviews using textual features of the user-reviews,
and rank the informative user-reviews. Villarroel et al. (Villarroel et al (2016))
enhance the release planning by classifying user-reviews into meaningful groups
of bug reports and feature requests. Our work aims to prioritize issue reports
by leveraging both user-reviews and issue reports. Therefore, we can prioritize
the issue reports by integrating both the users’ feedback reflected in user-
reviews and developers’ experience in handling issues.

Towards Prioritizing User-Related Issue Reports of Mobile Applications 3

In this paper, we collect all the Android apps (i.e., 1, 310 apps) that are
available on F-Droid (FDroid (2017)). F-Droid is the largest repository for
open-source Android apps. We study 326 of 1, 310 apps that have a non-trivial
amount of user-reviews and issue reports (Khalid et al (2016)). We address
the following research questions:

RQ1) How precisely can user-reviews be mapped to issue reports?

A user-review is an unstructured piece of text (Palomba et al (2015)) that is
not longer than two lines on average. We cluster the user-reviews to enhance
the precision of matching user-reviews with issue reports. Each cluster contains
the user-reviews that are related to the same issue. To map each cluster to its
related issue report, we compute the textual similarity between issue reports
and clusters of user-reviews. The results show that our approach achieves a
precision of 79%.

RQ2) Does prioritizing the user-related issue reports have a rela-
tionship with star-ratings?

To explain the prioritization order of issue reports, first, we compute 59 issue
report metrics and 31 user-review metrics. Then, we use the metrics to model
the issue reports prioritization of each app. Our models fits well (i.e., adjusted
R2 ≥ 0.5 (Nelder and Baker (1972))) for 37% of the apps but fails to fit for 63%
of the apps. We observe that the apps which share a significant relationship
between star-ratings and our metrics tend to receive higher star-ratings. The
results imply that prioritizing the issue reports with respect to our suggested
metrics is beneficial for achieving higher star-ratings.

RQ3) How can app developers prioritize the user-related issue re-
ports to achieve higher star-ratings?

It is beneficial to learn from the top-rated apps for prioritizing issue reports.
We use the top apps to train a prediction model using the random forest tech-
nique (Liaw and Wiener (2002)). We apply the trained model to the remaining
apps. For each app, we compare the similarity score between the predicted
prioritization orders and the actual prioritization orders of issue reports. We
obtain two groups of apps: (i) the apps with higher similarity scores of prior-
itization, and (ii) the apps with lower similarity scores. We observe that the
first group of apps receive higher star-ratings than the second group. Hence,
our suggested method can be a helpful solution for app developers to prioritize
the issue reports.

Paper Organization. Section 2 explains our experiment setup. Section 3
describes the details of the research questions and findings. Section 4 discusses
the potential threats to the validity of our work. Section 5 introduces the
related work. Finally, we conclude the paper in Section 6.

4 Ehsan Noei et al.

Preprocess and

Cluster User-

Reviews

Clusters of

User-Reviews

Prioritization

Orders

Measure

Prioritization

Orders

Google Play

Store

GitHub

Preprocess Issue

Reports
Preprocessed

Issue Reports

Measure Metrics

RQ1

Metrics of Clusters

and Issue Reports

RQ2 RQ3

Fig. 1: Overview of the experiment setup.

2 Experiment Setup

An overview of the experiment setup is depicted in Figure 1. As shown in
Figure 1, our experiment setup mainly consists of the following steps: (i)
preprocessing user-reviews and issue reports, (ii) clustering user-reviews, (iii)
computing metrics of both user-reviews and issue reports, and (iv) measuring
prioritization orders of issue reports.

We apply the vector space model (Salton et al (1975)) adopting TF-
IDF (Salton and Michael (1983)) to measure the cosine similarity between
issue reports and each cluster of user-reviews. We use metrics of clusters of
user-reviews and issue reports to model the issue reports prioritization. Fi-
nally, we build a prediction model based on top apps to predict the issue
reports prioritization of mobile apps. We observe that the apps that follow a
similar prioritization order as our prediction model, receive better star-ratings.

2.1 Data Sources

We retrieved a set of open-source apps associated with their GitHub repos-
itories from F-Droid app market (FDroid (2017)). F-Droid is an app store
for open-source Android apps that provides access to source code and binary
files (FDroid (2017)).

2.1.1 Apps

1, 310 open-source Android apps were hosted on F-Droid app market (FDroid
(2017)) as of September 1, 2016. Not all the 1, 310 apps were associated with

Towards Prioritizing User-Related Issue Reports of Mobile Applications 5

GitHub repositories. We obtained 1, 120 apps (i.e., 85% of the total apps) that
were associated with their GitHub repositories.

We build a distinct model for each individual app (see Section 3). To avoid
our findings being skewed by the apps with few numbers of user-reviews and
issue reports, we filtered out the apps that have less than 10 informative user-
reviews (see Section 2.2.1) and less than 10 issue reports (Khalid et al (2016)).
Moreover, the number of Events Per Variable (EPV) is a metric that calculates
the ratio of data points to the number of variables (Tantithamthavorn et al
(2017)). To avoid the risk of over-fitting and having unstable results, having an
EPV ≥ 10 is recommended (Tantithamthavorn et al (2017)). With less than
10 user-reviews or less than 10 issue reports, achieving an EPV ≥ 10 is not
possible. Therefore, the apps that have received less than 10 user-reviews or
issue reports should be excluded from our study. We identified 326 Android
apps that meet the aforementioned criteria.

2.1.2 User-Reviews

A user-review that is posted by an individual user contains a text, star-rating,
and date in which the review is posted. Figure 2 shows an overview of the
process of retrieving user-reviews. We gradually retrieved the user-reviews by
building a crawler on top of Selenium automation tool (Selenium (2017)). In
the following paragraphs, we describe Selenium tool, the crawler, and gradual
retrieving method.

Selenium. Selenium provides a set of tools and APIs to automate web brows-
ing. The chief purpose of Selenium is web testing. However, it can be used
for other purposes, such as web crawling. The primary parts of Selenium are
(i) an IDE, (ii) a client API, and (iii) a web driver. The Selenium IDE is im-
plemented as a Firefox add-on that allows recording, editing, and debugging
web tests (Bruns et al (2009)). The client API lets developer communicate
with Selenium. Finally, the web driver sends the Selenium commands to the
browser (Selenium (2017)).

Crawler. To retrieve the user-reviews, we built a crawler using Selenium (Se-
lenium (2017)). The crawler extracts all of the app information, such as app
names, and the associated user-reviews.

Gradual Retrieving. Google Play Store limits the total number of user-reviews
that a user can view to 2, 400 user-reviews (Khalid et al (2014)). Therefore, one
cannot access all the available user-reviews of an app at once if it comes with
more than 2, 400 user-reviews (Khalid et al (2014); Google (2017)). Therefore,
we run the crawler on a daily basis for five years to get the latest user-reviews
of each app. Then, we merge the new user-reviews with the existing user-
reviews in our database. Hence, we could capture all the user-reviews for all
the subject apps. The process of getting the new user-reviews takes about one
hour a day.

6 Ehsan Noei et al.

User-Reviews

Retrieve the

Latest User-

Reviews

Selenium

Crawler

User-Reviews
Merge the

User-Reviews

Fig. 2: Overview of the process of retrieving user-reviews.

2.1.3 Issue Reports

An issue report that is posted by a user on GitHub includes a title, text, and
date on which the issue is posted. We retrieved all the available issues of our
subject apps using GitHub application programming interface (API) (Devel-
oper (2018)). As an alternative approach, GHTorrent (Gousios (2013)) could
also have been used to measure the required metrics. As we only need the issue
reports of a limited number of projects (i.e., 1, 120 apps), using GHTorrent is
not necessary. Figure 3a shows the number of issue reports for each of the 326
subject apps. As shown in Figure 3a, the number of issue reports varies for
each app.

2.2 Preprocessing Data

A user-review is an informal piece of text (Google (2017); Palomba et al (2015))
that can potentially suffer from grammatical issues and typos. For example,
a user-review, such as “Tha pics couldnt be sentttt”, has several typos. “Tha”
and “sentttt” need to be changed to “The” and “sent”, respectively. More-
over, a user-review is usually short with few words. Furthermore, there are no
consistent choices of words to describe the same issues. For instance, different
users may use either the term error or the term problem to report a bug. In
addition, user-reviews contain negations that confuse automatic approaches.
Without considering negations, a user-review such as “Great app! Runs with no
problem!” could have been interpreted as a user-review that reports a problem.

In the following paragraphs, we describe the taken steps for addressing the
challenges that are mentioned above. In addition, we asked three non-authors
to evaluate the mappings between the user-reviews and issue reports. The
evaluators are graduate students in computer science and software engineering.
We randomly select 384 user-reviews with the associated issue reports with a

Towards Prioritizing User-Related Issue Reports of Mobile Applications 7

5
10

50
10

0
50

0
50

00

T
he

 n
um

be
r

of
 is

su
e

re
po

rt
s

(a) Issue Reports
5

10
50

50
0

50
00

T
he

 n
um

be
r

of
 u

se
r−

re
vi

ew
s

(b) User-Reviews

Fig. 3: The number of issue reports (from GitHub) and user-reviews (from
Google Play Store) for all the 326 apps.

confidence level of 95% and the confidence interval of 5%. Each evaluator
independently evaluated the mapping between the user-reviews in the sample
and the issue reports. We apply the major vote rule to solve the conflicts
among the evaluators. In each step, we use the above set of user-reviews as a
reference to measure the improvement in the mapping precision.

2.2.1 Filtering Out Uninformative User-Reviews

In total, we collected 170, 373 user-reviews. An uninformative user-review,
such as “This app is OK”, has no valuable information for app developers.
The most recent studies (Chen et al (2014); Villarroel et al (2016)) propose
different approaches to filter out uninformative user-reviews. For example,
Chen et al. (Chen et al (2014)) employ the expectation maximization for Näıve
Bayes classifier (Calders and Verwer (2010)) to identify uninformative user-
reviews. We cluster the related user-reviews together. Therefore, a group of
uninformative user-reviews can potentially become informative when they are
grouped together. Having groups of related user-reviews (informative or un-
informative) allows us to calculate the required metrics more accurately (see
Section 2.4). Consequently, we only filter out the user-reviews that only praise
or condemn an app. To this end, we use linguistic rules (Iacob and Harrison
(2013)). The main author defined the linguistic rules by manually investigat-
ing 5, 000 randomly selected user-reviews. Although more is always better, we
chose 5, 000 user-reviews because (i) a set of 5, 000 user-reviews is a represen-
tative sample of user-reviews and (ii) manually analyzing the user-reviews is
a time-consuming task. On average, each user-review takes 15 seconds to ana-
lyze. Therefore, it takes about 21 hours to analyze all the user-reviews. Among

8 Ehsan Noei et al.

Table 1: The linguistic rules for filtering out uninformative user-reviews.

Rule
1 <pronoun>? <App|Application>? <verb> <just,really,very,not>*

<adjective>? <adverb>?
Note. In this rule, verb ∈ {work, is, run} ∪ {describing verbs}, including all the
variants of a verb. For example for work, we considered works, does not work, is
working, has worked, has been working, and has not worked. Describing verbs are
the verbs that demonstrate users’ feelings, such as rocks and stinks.

2 <just,not,article,really,very>* adjective <App|Application>?
Note. Articles include a, an, and the.

3 <Appreciation>
Note. The appreciation verbs are thanks, thank you, thanks a lot, thanks so much,
thank you so much, and thank you very much

5, 000 user-reviews, we identified 3, 789 user-reviews as informative and 1, 211
user-reviews as uninformative ones according to the rules that are listed in
Table 1. As an example, for the first rule, we match ‘this app works fine’ and
‘is very awful’. For the second rule, we match ‘not a good app’ and ‘terrible’.
For the last rule, we match phrases like ‘thank you!!!’.

Moreover, we put aside non-English user-reviews from the collected user-
reviews using Language Detector (Optimaize (2017)). The Language Detector
creates a distinct profile for different languages. Then, it uses each profile to
identify the language of a given text (Optimaize (2017)). We end up with
130, 712 user-reviews. Figure 3b shows the number of user-reviews for each
subject app.

2.2.2 Correcting Typos

Typos usually impact the results of text analysis techniques (Nord (2005)). We
use Jazzy Spell Checker (Jazzy (2017)) with a dictionary of 645, 289 English
words to fix the typos of user-reviews and issue reports. Jazzy provides a set
of Java APIs that allows us to detect misspelled words and replace them with
the correct ones. Based on manually investigating 384 user-reviews with a con-
fidence level of 95%, the Jazzy corrects 68% of the incorrect words. Correcting
typos allows us to increase the mapping precision by 4%.

2.2.3 Resolving Synonyms

General-purpose thesaurus, such as WordNet (Miller (1995)), are not suffi-
cient to resolve the synonyms of an informal text, such as a user-review (Noei
et al (2018); Villarroel et al (2016)). Therefore, we build our own dictionary
of words to resolve the synonyms. To ease the processing of building the dic-
tionary, we applied LDA topic modeling technique (Blei et al (2003); Noei
and Heydarnoori (2016)) on our data. We manually investigate each group of
words that appear in the same topic and group the words that have similar
meaning together accordingly. From each set of similar words, we pick one as
the representative word and replace the other words with the representative

Towards Prioritizing User-Related Issue Reports of Mobile Applications 9

word of each group. For example, bug, error, and glitch belong to the same
group of terms.

We also replaced abbreviations and informal messaging vocabularies with
formal words. We find the abbreviations and informal messaging vocabularies
from the available online sources (Allacronyms (2017); Netlingo (2017)). For
example, “luv” should be replaced with “love”. In our experiment, resolving
synonyms let us increase the mapping precision by 3%.

2.2.4 Resolving Negations

The negations in the user-reviews can mislead the text processing techniques in
getting the real meaning of user-reviews. To avoid such confusions, we use the
Stanford natural language processing toolkit (Manning et al (2014)) to find
and resolve the negated terms (Villarroel et al (2016)). In our experiment,
resolving negations increases the precision of our mapping by 3%.

2.2.5 Removing Stop-Words

Stop-words are the most common words that exist in a language, such as “is”
and “the”. We remove stop-words using Stanford CoreNLP (Manning et al
(2014)). Removing stop-words allows text processing techniques to focus on
the main words of user-reviews and issue reports (Rajaraman et al (2012)).

2.2.6 Stemming

Reducing inflected words to their word stem is called stemming (Lovins (1968)).
By stemming user-reviews and issue reports, all forms of a word can be trans-
formed to the same stem. For example, “report” and “reporting” have the
same word stem that is “report”. We use the Snowball program (Snowball
(2018)) to stem the words.

2.2.7 Extracting n-grams

Sometimes, words share a more concrete meaning when they come together.
For example, a four-word phrase, such as does not send pictures, shows a
problem in sending pictures, while having these four words separated does not
reflect its real meaning. A n-gram is a contiguous sequence of n words from
a given sentence or sequence of words (Broder et al (1997)). For each user-
review and issue report, we extract the n-grams with n varying from 2 to 4.
Extracting the n-grams helps us to deal with the negations more effectively.
Similar to Villarroel et al. (Villarroel et al (2016)), we extract the n-grams
before the preprocessing steps to avoid losing any potential information. In
our experiment, extracting the 2-grams, 3-grams, and 4-grams, increase the
mapping precision by 3%, 1%, and 1% respectively. In total, extracting the
n-grams (n ∈ {2, 3, 4}) increases the mapping precision by 5%.

10 Ehsan Noei et al.

2.3 Clustering User-Reviews

We cluster the related user-reviews by customizing the Villarroel et al. ap-
proach (Villarroel et al (2016)), such as adding a step for correcting typos.
By clustering the user-reviews, even short and uninformative user-reviews can
become helpful when they are considered together. Furthermore, clustering
the user-reviews is required in this study for two main reasons: (i) having
the related user-reviews clustered together significantly increases the mapping
precision by 45%, and (ii) computing the metrics of user-reviews requires a
group of related user-reviews, such as quantifying the number of user-reviews
that report the same issue.

2.3.1 Approach

We apply DBSCAN (Ester et al (1996)) on user-reviews of each app. DBSCAN
is a density-based clustering algorithm that groups the elements of user-reviews
(i.e., words and n-grams) together that are closely placed near each other. We
compute the distance between two user-reviews by applying the vector space
model (Salton et al (1975)) cosine similarity between (i) the associated star-
ratings (Villarroel et al (2016)), (ii) the post-processed user-reviews, and (iii)
the lists of n-grams. We adopt the term frequency-inverse document frequency
(TF-IDF) (Salton and Michael (1983)) on the vectors of user-reviews. TF-
IDF allows us to measure the frequency of each term and estimate how much
information each term provides. DBSCAN requires two parameters: (i) the
maximum distance between the user-reviews, and (ii) the minimum number
of user-reviews that can be clustered together. We set the maximum distance
between two user-reviews to 0.6 as it gives the best performance of DBSCAN.
We set the minimum number of points of DBSCAN to 1, as one user-review
may be useful in identifying a potential issue.

2.3.2 Evaluation

We followed the same approach as Villarroel et al. (Villarroel et al (2016))
to evaluate the clustering approach. We randomly selected 384 user-reviews
with a confidence level of 95% and the confidence interval of 5%. The external
evaluators clustered the related user-reviews. Then, we compared the manu-
ally clustered user-reviews with the automatically clustered user-reviews. We
achieved an accuracy of 80% in clustering the user-reviews. An example of an
issue report that is matched with a cluster of user-reviews is shown at Table 2.
As shown in Table 2, the reported issue is about an issue in the auto-correcting
module where there exists some user-reviews reporting the same issue.

2.4 Computing Metrics of User-Reviews

We follow the Goal / Question / Metric (GQM) paradigm (Basili (1992);
Van Solingen et al (2002)) to capture the metrics of user-reviews. The GQM

Towards Prioritizing User-Related Issue Reports of Mobile Applications 11

Table 2: A sample issue report matched with a cluster of user-reviews.

Issue Report User-Reviews
Title: Autocorrect stopped working in
comment reply field

(i) Autocorrect not working
(ii) Fix the autocorrect
(iii) When replying in nofications,
autocorrect crashes
(iv) Would give 5 stars, but the
recent autocorrect issues... 3 stars
(v) Posting a comments makes
autocorrect stop

Body: If you reply to a comment in Noti-
fications or the Reader, you won’t get any
autocorrect suggestions above the key-
board. From a quick poke around in the
code, it appears to be related to using a
subclass of AutoCompleteTextView

is a measurement paradigm that is based on three levels: (i) conceptual, (ii)
operational, and (iii) quantitative. The conceptual level, i.e., the goal, should
be defined with respect to the purpose of a given model. The operational level
is a set of questions to describe the goal that is defined at the conceptual level.
The quantitative level is a set of metrics that can be measured to address each
question of the operational level. Also, the availability of each metric has to
be considered. For instance, we cannot capture the level of expertise of a user
who posts a user-review, but we can capture the number of users that post
similar user-reviews.

We set our goal to quantify the user-reviews. Table 3 shows our GQM model
for capturing the user-reviews. As shown in Table 3, we measure 31 metrics of
user-reviews, such as the number of similar user-reviews and the proportion
of negative and positive user-reviews. For star-ratings, sizes of user-reviews,
and sentiment scores, we compute the mean, median, minimum, maximum, 1st

quartile, and 3rd quartile of each metric. The median is a metric to measure the
central tendency of the data. However, it does not reflect the distribution of
data below and above the median. To reduce such a limitation, we measure the
1st and 3rd quartile in addition to the median. For instance, if the 1st quartile
is far away from the median but the 3rd quartile is close to the median, we
can infer that the data points that are greater than the median are closely
placed together in comparison with the data points that are less than the
median (Kelley (1947)).

2.5 Computing Metrics of Issue Reports

Table 4 shows the GQM model to quantify the issue reports. We compute
the mean, median, minimum, maximum, 1st quartile, and 3rd quartile of the
following metrics: (i) the sizes of comments, (ii) contribution, (iii) number of
following, (iv) number of followers, (v) number of gists of the people who have
involved in an issue, and (vi) the time since they have joined GitHub.

Regarding the size of an issue report, it can reflect the amount of informa-
tion contained in the issue report (Kim et al (2006)). Moreover, Yu et al. (Yu
et al (2015)) indicate that the size of a given document can be associated
with the quality and the complexity of a document. For example, consider the

12 Ehsan Noei et al.

Table 3: GQM model to capture the metrics of user-reviews, along with a brief
description.

Goal: Quantifying the user-reviews for a given issue
Question Metric(s) Description #
How many users re-
ported the same is-
sue?

Number of similar
user-reviews

The number of times that an is-
sue is reported can affect its pri-
ority. Developers may consider
resolving an issue in the next re-
lease if the majority of users re-
port the same issue.

1

How did the users re-
porting the same is-
sue rate an app?

Star-ratings To maintain the level of star-
ratings, developers are more
likely to prioritize the issues
that are reported with low star-
ratings.

6

What is the propor-
tion of high, low, and
neutral star-ratings
for the user-reviews
reporting the same
issue?

Proportion of low,
neutral, and posi-
tive star-ratings

To capture the diversity of rat-
ings, we measure the proportion
of negative, positive, and neutral
user-reviews within each cluster.
We consider a user-review with
a star-rating equal to 3, greater
than 3, or less than 3 as a neu-
tral, high, or low user-review, re-
spectively (Noei et al (2017)).

3

How much effort do
users put to describe
an issue and how
much information is
provided?

Sizes of user-reviews The size of a user-review can re-
flect the helpfulness and the im-
portance of the user-review (Kim
et al (2006)). We use Stanford
parser (De Marneffe et al (2006))
to count the number of words and
sentences in the user-reviews.

12

How was the users’
experience with a
given issue?

Sentiment scores The star-ratings do not always
reflect the real sentiments of
user-reviews. To capture the sen-
timent scores of user-reviews,
we apply sentimental analysis
on the user-reviews using the
SentiStrength-SE tool (Islam and
Zibran (2017)).

6

What is the propor-
tion of user-reviews
with positive, nega-
tive, and neutral sen-
timent scores?

Proportion of neg-
ative, neutral, and
positive sentiment
scores

We measure the proportion of
negative, positive, and neutral
user-reviews in each cluster of
user-reviews.

3

Total: 31

example issue reports that are listed in Table 5. The first issue report with a
bigger size provides comprehensive details of the reported issue, including the
expected behavior, the actual behavior, and the steps to reproduce the issue.
However, the second issue with a smaller size report does not provide enough
context to understand and resolve the issue.

Towards Prioritizing User-Related Issue Reports of Mobile Applications 13

Table 4: GQM model to capture the metrics of issue reports, along with a brief
description.

Goal: Quantifying the issue reports
Question Metric(s) Description #
How many users con-
tributed to resolving
an issue?

Number of users The number of GitHub users who
have involved in the discussions
can implicitly show the impor-
tance of an issue.

1

How many interac-
tions have been hap-
pened for resolving
an issue?

Number of com-
ments

The number of comments can re-
flect the complexity of resolving
an issue.

1

How well an issue is
described?

Sizes of issue reports To capture the size of an issue
report, we count (i) the number
of words of the title, and (ii) the
number of words and sentences of
the body.

3

How well the com-
ments of an issue are
described?

Sizes of comments Similar to the size of an issue
report, we measure the number
of words and the number of sen-
tences of the comments posted on
the issue report.

12

What is the contri-
bution of an issue re-
porter?

Reporter contribu-
tion

If an issue report is reported by
a user with a high contribution,
the issue report may be prior-
itized with a higher rank. For
each member, GitHub (GitHub
(2018a)) computes a contribution
score based on the activities of
the user.

1

What is the contri-
bution of the users
who have involved in
resolving an issue?

Contribution of
users who have
involved in issues

Similar to the contribution of the
reporter, we measure the contri-
bution of the users who have in-
volved in each issue.

6

For how long a re-
porter is a member of
GitHub?

Time since reporter
has joined GitHub

A more experienced user may
be more active on GitHub. We
compute the time since each re-
porter has joined GitHub as of
September 1, 2016.

1

For how long the
users who have in-
volved in an issue are
members of GitHub?

Time since contrib-
utors have joined
GitHub

We measure the time since each
distinct user who has contributed
to an issue report has joined
GitHub.

6

How popular is the
reporter?

Number of following
and followers of re-
porters

The number of followers and fol-
lowings of a user can estimate the
popularity of the user (Romero
et al (2011); Bertram et al
(2010)). A user with many follow-
ers could be very popular. This
can result in addressing the issues
that are reported by such a user
earlier than other issues.

2

(continues on next page)

14 Ehsan Noei et al.

Table 4: GQM model to capture the metrics of issue reports (continued).

Question Metric(s) Description #
How popular are the
users who have in-
volved in an issue?

Number of following
and followers of con-
tributors

We measure the number of fol-
lowers and the number of follow-
ings of the users who have con-
tributed to each issue report.

12

How many code snip-
pet a reporter has
shared?

Number of gists of
reporter

Gist is a GitHub service that al-
lows users to share code snippets
with others (GitHub (2018a)).
The number of gists can show
how much a developer intends to
help the development community
that could be associated with the
developers’ activity.

1

How many code snip-
pet the contributors
have shared?

Number of gists of
contributors

We measure the number of gists
of the users who have contributed
to an issue report.

6

What is the number
of repositories of the
reporter?

Number of public
repositories of re-
porters

A user can contribute to different
public repositories on GitHub.
The number of repositories on
which a user works can capture
the level of expertise and en-
gagement of the user in different
projects.

1

What is the number
of repositories of con-
tributors?

Number of public
repositories of con-
tributors

We count the number public
repositories of the contributors to
an issue report.

6

Total: 59

2.6 Measuring the Prioritization Order of Issue Reports

Developers react to some issues very fast, while they might postpone respond-
ing to some other issues for many weeks. We consider the developers’ reaction
attitude as an indicator of the importance of the issues. To estimate develop-
ers’ reaction to each issue, we consider the following actions: (i) post comments
on an issue report, (ii) submit commits for an issue report, and (iii) adding
specific keywords to an issue report, including “Fixed”, “Solved”, “Resolved”,
“Closed”, “Feature added”, and “Finished”. To measure the reaction time for
each issue, we compute the minimum value of the intervals between each of
the aforementioned actions and the time since an issue report has been posted
on GitHub. We use the reaction times to measure the prioritization orders of
issue reports.

However, some noises may be introduced by considering posting comments
as an indicator of prioritization order of the issues. For example, a developer
may immediately post a comment on an open issue to mention that they
will take care of it after dealing with more important issues. We manually
investigate the comments of a sample issue reports (384 issue reports) with a
confidence level of 95%, confidence interval of 5, and population of 239, 736.
We observe that only 1.7% of the comments are irrelevant to the associated
issue reports which is a tolerable proportion of comments.

Towards Prioritizing User-Related Issue Reports of Mobile Applications 15

Table 5: Two sample issue reports.

Issue Report
1 Title: Refresh a post view

Body: Expected behavior: When you are reading a post (I mean: when you have
tapped in one the items in your posts list in the reader and are reading the expanded
view), I expect to be able to “pull to refresh” so I can update the comments & favs
of the post. Actual behavior: Nothing happens. Pull to refresh is not available
when you are reading a post. If you want to refresh the comments you need to
go pack to your posts lists, refresh there and then tap back in the post. Steps to
reproduce the behavior:Go to the reader. Tap on any post. Try to refresh it.
Date: Apr 12, 2016
Status: Closed

2 Title: after creating custom ref the spinner ‘from’ does not get updated (shows
only after second exec or refresh).
Body: NULL
Date: Apr 10, 2013
Status: Open

3 Research Questions and Results

In this section, for each research question, we present our motivation, approach,
and findings.

RQ1) How precisely can user-reviews be mapped to issue reports?

Motivation

Many apps have hundreds or even thousands of user-reviews. It is not a trivial
task for app developers to manually analyze all of the user-reviews, while it is
beneficial to map user-reviews to issue reports automatically. Therefore, app
developers would be able to use the user-reviews to prioritize the issue reports.
Moreover, having the knowledge of the issues that are also mentioned in the
user-reviews can help app developers to better manage the issues and prevent
issue report duplications (Cavalcanti et al (2013)).

Approach

As described in Section 2.3, first, we cluster the related user-reviews. We con-
sider all of the user-reviews that belong to the same cluster as a single doc-
ument that describes the same issue. To determine the similarity between
user-reviews and issue reports, we apply the vector space model (Salton et al
(1975)). First, we compute TF-IDF (Salton and Michael (1983)) to obtain the
vector of each document, i.e., either a cluster of user-reviews or an issue report.
Second, we calculate cosine similarities between issue reports and each cluster
of user-reviews. We associate a cluster of user-reviews with an issue report if

16 Ehsan Noei et al.

their similarity is greater than the threshold τ . We evaluate our experiment
with different thresholds from 0.05 to 0.95 on five randomly selected apps.

To measure the performance of our mapping approach, we adopt the pre-
cision. The precision is computed as the proportion of correctly matched pairs
of clusters of user-reviews and issue reports among all the matched pairs. We
asked three non-authors to manually examine the correctness of each matched
pair on a statistically representative sample set of the rest of the apps, i.e., all
apps excluding the five apps that we used to determine the best threshold. To
obtain such a set, we randomly select 384 user-reviews with their associated
issue reports from 30, 520 user-reviews with a confidence level of 95% and the
confidence interval of 5%. The three evaluators independently evaluate the
sample of user-reviews matched with the issue reports. We apply the major
vote rule to resolve the conflicts amongst the evaluators.

Findings

We achieve a precision of 79% in matching user-reviews with issue
reports. Figure 4a shows the precision achieved by our approach with various
thresholds and Figure 4b shows the number of matches between user-reviews
and issue reports. We set the threshold to 0.85 with a trade-off between the
precision of matches and the number of matches. Based on the manual analysis
by the three evaluators, our approach achieves a precision of 79% with the
threshold τ of 0.85.

We match 27% of the user-reviews with the 33% of the issue reports. The
issue tracking systems are normally the working area of app developers (Janák
(2009)), while user-reviews are from external users. The matches between the
issue reports and the clusters of user-reviews show the issues that are reflected
in both user-reviews and issue reports. In the next research questions, we
show that prioritizing only the user-related issue reports shares a significant
relationship with star-ratings. Therefore, our approach can help app developers
to prioritize user-related issue reports to receive higher star-ratings. Having
considered the user-reviews that are grouped together, developers can create
new issue reports concerning the user-reviews that are left out. Therefore, with
respect to our approach, developers can cover more of the user-reviews when
maintaining their apps.

Using our mapping approach, user-reviews can be mapped to issue re-
ports with a precision of 79%.

Towards Prioritizing User-Related Issue Reports of Mobile Applications 17

Cosine Similarity Threshold

P
re

ci
si

on

5 15 30 45 60 75 90

5
20

40
60

80

(a) The precisions of our approach.

N
um

be
r

of
 m

at
ch

es
 ×

 1
,0

00

5 15 30 45 60 75 90

0
20

0
50

0
80

0

Cosine Similarity Threshold

(b) The number of matches between user-reviews and
issue reports.

Fig. 4: The precisions of our approach and the number of matches between
user-reviews and issue reports obtained using thresholds from 0.05 to 0.95.

RQ2) Does prioritizing the user-related issue reports have a rela-
tionship with star-ratings?

Motivation

Developers may take different priority orders when addressing the user-related
issue reports. Although the lack of issue reports prioritization can negatively

18 Ehsan Noei et al.

Build a Generic

Model

Prioritization

Orders

Metrics of Clusters

and Issue Reports

Build Specific

Models Specific Models

Generic Model
Analyze the

Generic Model

Divide the Apps

into Two Groups

Apps that Could

be Modeled

Apps that Failed

to be Modeled

Compare the

Star-Ratings

Fig. 5: Overview of our approach for addressing the second research question.

impact star-ratings, there is no empirical evidence to show the relation be-
tween prioritizing the user-related issue reports and star-ratings. Therefore,
we investigate the relationship between star-rating and the metrics of user-
reviews and issue reports.

Approach

We model the issue reports prioritization using linear regression models (Far-
away (2005)). The dependent variable of the regression models is the prioriti-
zation orders of the apps. The independent variables are the metrics computed
from both user-reviews and issue reports. The goodness of fitness, i.e., adjusted
R2 (Nelder and Baker (1972)), of the linear regression models shows whether
issue reports prioritization has a relationship with the metrics of user-reviews
and issue reports. Figure 5 shows an overall overview of our approach.

Before building the regression models, we identify the correlated variables.
We apply variable clustering analysis (Hmisc (2017)) to build a hierarchi-
cal overview of the correlation between the independent metrics (Noei et al
(2017)). The metrics within each sub-hierarchy of metrics with Spearman’s
|ρ| > 0.7 are considered as correlated variables (Nguyen et al (2010)). We
choose one metric that is easier to comprehend for inclusion in our model
from each sub-hierarchy of metrics. We build two types of regression models:

(i) Generic Model. We build a generic model using all of the subject apps.
Building a generic regression model with a high goodness of fitness can
show that different apps are following a similar strategy for prioritizing
issue reports.

(ii) Specific Models. For each app, we build an independent regression model.

We get a goodness of fitness for each independent regression model. A
higher goodness of fitness can indicate that the issue reports prioritization of
an app has a significant relationship with the metrics of user-reviews and issue

Towards Prioritizing User-Related Issue Reports of Mobile Applications 19

p−value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
5

10
20

30

Fig. 6: Adjusted R2s that are obtained from the regression models that are
built for each app.

reports. The EPV measures the ratio of data points to the number of vari-
ables (Tantithamthavorn et al (2017)). An EPV of greater than 10 is recom-
mended to have a low risk of over-fitting and unstable results (Tantithamtha-
vorn et al (2017)). We did not consider 14% of the apps with EPVs less than
10. We divide the apps into two groups; one group with R2 ≥ 0.5 and another
one with R2 < 0.5 (Nelder and Baker (1972)). We compare the star-ratings
of the two groups of apps using Mann–Whitney U test (Mann and Whitney
(1947)). As a null hypothesis, we assume that the distributions of the star-
ratings between the two groups of the apps are the same. The Mann–Whitney
U test rejects this hypothesis with a p− value of less than 0.05.

The Mann–Whitney U test can show a significant difference for a suffi-
ciently large sample even if the difference is negligible. Therefore, we also
measure the effect size of the differences between star-ratings by applying
Cliff’s δ (Cliff (1993)). Cliff’s δ is a non-parametric measure without assump-
tions about the distribution of data (Cliff (1993)). Cliff’s δ measures the degree
of overlap between the two sets of star-ratings. The output of the Cliff’s δ is
a number between −1 and +1. If the distribution of star-ratings between the
two sets of apps is identical, the Cliff’s δ would be 0 (Cliff (1993)). If all the
values of the first set are greater than the second set, it would be +1, and vice
versa. We use Cohen’s d (Cohen (2013)) to interpret the effect sizes (Zhang
et al (2015)). Cliff’s δ could be mapped to Cohen’s standards; the values of
0.147, 0.330, and 0.474 denote small, medium, and large effect size, respec-
tively (Zhang et al (2015)).

20 Ehsan Noei et al.

Findings

Developers of different apps do not follow the same strategy to pri-
oritize the user-related issue reports. Our generic model using all of the
subject apps has a very low goodness of fitness, i.e., R2 < 0.05. Thus, there
is no statistically significant universal relationship between the issue reports
prioritization and metrics of user-reviews and issue reports for all different
apps.

For 37% of the subject apps, issue reports prioritization can be
modeled with the metrics of user-reviews and issue reports. The
regression models of 37% of the subject apps achieve R2s ≥ 0.5, i.e., the
issue reports prioritizations share significant relationships with the metrics of
user-reviews and issue reports. Figure 6 shows the obtained R2s. Tables 6
and 7 show two sample models that are built for two distinct apps, i.e., Indic
Keyboard1 and Vanilla Music2, sorted by p−value. In the last column in both
tables, upward arrows indicate that when the values of the associated metrics
increase, the prioritization rank is more likely to increase, while downward
arrows indicate otherwise. For the remaining 63% of the apps, we could not
build regression models with a high goodness of fitness.

Developers of different apps do not consider the same importance
level for the metrics of issue reports and user-reviews. Among the apps
having the user-related issue reports prioritized, the sets of significant metrics
are different from each other. For example, some issue reports are prioritized
according to the metrics that are defined in the scope of issue tracking systems,
such as the contribution of a user who has reported the issue. Some other issue
reports are prioritized by considering the user-reviews, such as the number of
user-reviews. We count the frequencies of the metrics that share statistically
significant relationships with the issue reports prioritization. Table 8 shows the
top five metrics of the issue reports and the user-reviews that appear the most.
In particular, the size of the title and body, the number of comments, and the
contribution of the person who reported the issue are the metrics that appear
the most as a significant metric. The star-ratings and the number of user-
reviews are the two metrics of user-reviews that have the most relationship
with the issue reports prioritization.

The title size is the most popular and the most important metric when
it comes to issue reports prioritization. As shown in Table 8, for 59% of the
subject apps, the title size appears as a statistically significant metric. The
next important metric is the number of comments that are posted for an issue
report. The issues that are associated with a higher prioritization order tend
to receive more comments. Having considered the title size and the body size
as two significant metrics, the contents of issue reports play an important role
in issue reports prioritization. Another interesting observation is where the
reporter contribution appears as a significant metric for 41% of the apps and

1 https://play.google.com/store/apps/details?id=org.smc.inputmethod.indic
2 https://play.google.com/store/apps/details?id=ch.blinkenlights.android.vanilla

Towards Prioritizing User-Related Issue Reports of Mobile Applications 21

Table 6: The model that is built for Indic Keyboard app, sorted by p− value.

Metric Pr(>|t|) Effect
Reporter contribution 0.001 *** ↗
Minimum star-rating 0.015 * ↘
Proportion of high star-ratings 0.023 * ↘
Maximum sentiment score of user-reviews 0.051 . ↘
Number of reviews 0.053 . ↗
Maximum contribution of users who involve in issues 0.065 . ↗
Maximum number of sentences in user-reviews 0.099 . ↗
Minimum number of sentences in user-reviews 0.119 ↘
Proportion of low star-ratings 0.132 ↗
Number of gists of reporter 0.141 ↘
Time since reporter has joined GitHub 0.172 ↗
Minimum sentiment score of user-reviews 0.370 ↗
Number of comments 0.452 ↘
Proportion of positive sentiment scores 0.470 ↘
Minimum contribution of people who involve in issues 0.631 ↘
Number of followers of reporter 0.662 ↗
Title size 0.776 ↘
Minimum number of words in user-reviews 0.809 ↘
Maximum star-rating 0.898 ↗
Number of words in issue reports 0.974 ↘
p− value codes: ‘***’< 0, ‘**’< 0.001, ‘*’< 0.01, ‘.’< 0.05

Table 7: The model that is built for Vanilla Music app, sorted by p− value.

Metric Pr(>|t|) Effect
Title size 0.001 *** ↘
Number of gists of reporter 0.007 ** ↗
Proportion of negative star-ratings 0.017 * ↗
Number of followers of reporter 0.022 * ↗
Minimum number of words in user-reviews 0.034 * ↗
Reporter contribution 0.081 . ↗
Proportion of high star-ratings 0.096 . ↘
Number of words in issue reports 0.116 ↘
Proportion of user-review with neutral sentiment scores 0.180 ↘
Time since reporter has joined GitHub 0.210 ↘
Minimum contribution of people who involve in issues 0.248 ↗
Number of comments 0.252 ↘
Minimum sentiment score of user-reviews 0.350 ↘
Number of user-reviews 0.352 ↗
Maximum contribution of people who involve in issues 0.369 ↗
Minimum number of sentence in user-reviews 0.438 ↘
Minimum star-rating 0.541 ↘
Number of following of reporter 0.738 ↗
Proportion of positive sentiment scores 0.956 ↘
p− value codes: ‘***’< 0, ‘**’< 0.001, ‘*’< 0.01, ‘.’< 0.05

22 Ehsan Noei et al.

Table 8: Ranking and percentages of the occurrence of the top five metrics of
issue reports and user-reviews.

Context Rank Metric Occurrence
1 Title size 59%

Issue 2 Number of comments 55%
Reports 3 Body size 44%
(GitHub) 4 Reporter contribution 41%

5 Time since reporter has joined GitHub 40%
1 Minimum star-rating 13%

User-reviews 2 Number of user-reviews 12%
(Google 3 Proportion of neutral star-ratings 10%
Play Store) 4 Minimum sentiment score 8%

5 Proportion of low star-ratings 8%

the time since the reporter has joined GitHub appear for 40% of the apps.
This can show that an issues report that is reported by a developer with a
higher reputation tend to be addressed at a faster pace.

Among the user-review metrics, the minimum star-rating, the proportion
of neutral star-ratings, and the proportion of low star-ratings appear for 13%,
10%, and 8% of the subject apps as statistically significant metrics, respec-
tively. This may be because developers would like to reduce the number of
low star-ratings by addressing the user-reviews that are associated with lower
star-ratings (Noei et al (2017)).

Addressing the issues in the user-reviews has a statistically sig-
nificant relationship with star-ratings. The results in Figure 7 show that
the apps that we could match their issues reports with the user-reviews re-
ceive higher star-ratings. The differences between the star-ratings of the apps
that we could match their issues reports with the user-reviews (the first and
the second boxplot in Figure 7) and the apps that we could not match their
issues reports with the user-reviews (the third boxplot in Figure 7) are statis-
tically significant with a p− value of 5.37e− 05 and a medium effect size with
Cohen′s d of 0.37.

Prioritizing the issue reports with respect to our metrics shares
a statistically significant relationship with star-ratings. The first two
boxplots in Figure 7 show the apps that we could match their user-reviews
with their issue reports. The differences between the apps that (i) the issue
reports prioritization is statistically significantly related to our metrics (the
first boxplot in Figure 7) and (ii) the issue reports prioritization is not statis-
tically significantly related to our metrics (the second boxplot in Figure 7) are
statistically significant with a p − value of 8.82e − 06 and a medium effects
size with a Cohen′s d = 0.55. Figure 7 shows that the star-ratings of the first
group of apps are higher than the other apps.

The issue reports of different apps are prioritized differently. Higher
star-ratings are recorded for apps for which a statistically significant
relationship exists between our metrics and issue reports prioritization.

Towards Prioritizing User-Related Issue Reports of Mobile Applications 23

1 2 3

1
2

3
4

5

S
ta

r−
ra

tin
g

Fig. 7: The average of star-ratings of the apps that:

1) We could match their user-reviews with the issue reports and the issue
reports prioritization is statistically significantly related to the metrics.

2) We could match their user-reviews with the issue reports but the issue
reports prioritization does not share a statistically significant relationship
with the metrics.

3) We could not match their user-reviews with the issue reports.

RQ3) How can app developers prioritize the user-related issue re-
ports to achieve higher star-ratings?

Motivation

In RQ2, we observe that issue reports prioritization shares a significant rela-
tionship with star-ratings. To utilize the important findings of RQ2, we suggest
a prioritization method for ranking issue reports in order to achieve higher
star-ratings.

Approach

Figure 8 shows an overview of our approach. To better prioritize the issue re-
ports, we define four levels of prioritization. Given the list of issue reports that
are ranked based on the prioritization order of issue reports (see Section 2.6),
we define the prioritization levels of the issue reports as follows:

(i) High Priority : The issue reports within the first quartile (0− 25%) of the
prioritization orders are labeled as high priority.

(ii) Medium Priority : The issue reports within the second quartile (25− 50%)
of the prioritization orders are labeled as medium priority.

24 Ehsan Noei et al.

Predict the Prioritization

Orders and Compare

with Actual Orders

Metrics of Clusters

and Issue Reports

Prioritization

Model

Build a

Prioritization

Model

Apps with

Similar Orders

Apps with

Different Orders

Compare the

Star-Ratings

Levels of Prioriti-

zation Orders

Train Set Test Set

Fig. 8: Overview of our approach for addressing and evaluating the third re-
search question.

(iii) Low Priority : The issue reports within the third quartile (50−75%) of the
prioritization orders are labeled as low priority.

(iv) Trivial Priority : The issue reports within the last quartile (75− 100%) of
the prioritization orders are labeled as trivial priority.

Issue tracking systems usually define a limited number of prioritization or-
ders for the issue reports (Xuan et al (2012)). For example, Bugzilla (Bugzilla
(2018)) defines five orders of prioritization orders from trivial to high prior-
ity. We chose four levels of prioritization according to the distribution of the
prioritization orders of our subject apps. The high priority issue reports are
addressed within an hour. The medium priority issue reports are addressed
within a day. The low priority issue reports are addressed within five days.
The trivial priority issue reports are addressed after five days.

We build a random forest model (Liaw and Wiener (2002)) to predict the
prioritization levels of issue reports. Random forest (Ho (1995)) is a classifi-
cation approach that builds a number of decision trees at the training stage.
Random forest runs efficiently on large databases and works accurately for
predictions (Ho (1995)). First, we train a model with the issue reports (that
are labeled with four levels of prioritization) of top N apps that hold the high-
est star-ratings. Second, we use the trained model to predict the prioritization
levels of issue reports of the rest of the apps. Third, we measure the accuracy
of the predicted levels with the real levels using Equation (1). In Equation (1),
for an app a, Ic(i) shows the number of issue reports with correct predicted
levels, and the I(i) shows the total number of issue reports for the app a.

Accuracy =
Ic(i)

I(i)
(1)

Fourth, we divide the test apps into two groups based on the accuracy of the
predicted levels. We put the apps with the pair-wise similarity of more than or

Towards Prioritizing User-Related Issue Reports of Mobile Applications 25

equal to the threshold σ into one group. The apps with the pair-wise similarity
of less than σ are placed into another group. We compare the average star-
ratings of the two groups of apps using the Mann–Whitney U test (Mann
and Whitney (1947)) to verify whether there is a difference between the star-
ratings of the two groups of apps. If the p−value is less than 0.05, it shows that
the difference between the star-ratings of two groups of apps is statistically
significant. We also calculate the effect size of differences between the star-
ratings by measuring Cliff’s δ (Cliff (1993)).

To find the best number of top apps (i.e., top N apps), we conduct a
sensitivity analysis on the value of N . We did the sensitivity analysis by incre-
mentally adding top apps; starting with the app that has received the highest
star-ratings (N = 1), adding the second app with the highest star-ratings
(N = 2), and continuing this process until covering all the apps. We train our
prioritization model based on top N apps and test the model using the rest of
the apps.

We observe that with N = 5, we can build up a prioritization model that
can statistically significantly distinguish the star-ratings of the two groups of
apps with the lowest p−value (i.e., p−value = 2.7e−2). Starting from N = 5,
as the value of N increases (or decreases) the p− value tends to increase. We
decided to consider the top 5 apps as the difference in the star-ratings of the
two groups of apps is larger by having N = 5.

The threshold σ divides the tested apps into two groups of apps that: (i)
have similar prioritization orders to our predicted levels, and (ii) have different
prioritization orders from our predicted levels. To identify the best value of
σ, we conduct a sensitivity analysis. In our sensitivity analysis, we repeat our
experiment with different values of 0.01 <= σ <= 0.99 (with the increment
value of 0.01). The results of our sensitivity analysis show that any values of σ
between 0.43 and 0.55 cause a statistically significant difference between the
two groups of the tested apps. 48 apps have a similar prioritization approach
to the top 5 apps.

We calculate the mean decrease in Gini, i.e., Gini importance (Archer and
Kimes (2008)), to sort the metrics of the ranking model with respect to their
importance. The mean decrease in Gini measures the contribution of each met-
ric to the homogeneity of the nodes and the leaves in the model (Biau and
Scornet (2016)). As all the metrics are numerical, the mean decrease in Gini
is a proper approach to identify the important metrics (Strobl et al (2007);
Archer and Kimes (2008)).

Findings

Top apps can provide good patterns for other apps to follow for
prioritizing the issue reports. The apps that have similar prioritizations
to our predicted prioritizations receive higher star-ratings than other apps.
Figure 9 shows the distribution of star-ratings for the apps that: (i) the pri-
oritizations of the issue reports are similar to our predicted prioritizations,

26 Ehsan Noei et al.

1 2

1
2

3
4

5

S
ta

r−
ra

tin
g

Fig. 9: The average of star-ratings of the apps that: 1) have similar prioriti-
zations as our predicted prioritizations, 2) have different prioritizations from
our predicted prioritizations.

and (ii) the prioritizations of the issue reports are different from our predicted
prioritizations. As shown in Figure 9, the star-ratings are higher for the apps
that have similar prioritizations to our predicted prioritizations. The difference
in star-ratings between the two groups of apps is statistically significant. The
p − value is 3.4e − 2 and the effect size is medium with a Cohen′s d = 0.30,
indicating that the difference is observable and cannot be neglected.

Table 9 shows the metrics that are used to build the ranking model with
respect to the top five apps. As shown in Table 9, the time since a reporter has
joined GitHub holds the highest Gini importance. The appearance of the time
since a reporter has joined GitHub as a statistically significant metric could
be due to the lack of knowledge and experience of the newer members (Stein-
macher et al (2018); Vasilescu et al (2015)). Vasilescu et al. (Vasilescu et al
(2015)) investigated different aspects of having a diverse (e.g., new and experi-
enced) team members on GitHub. Having diverse developers has some advan-
tages, such as providing a wider range of new ideas (Vasilescu et al (2015)).
However, it takes some time for new developers to fit in a project (Zanatta et al
(2017)). Improper contributions by newcomers require more efforts for inte-
grations which makes the development process harder (Vasilescu et al (2015)).
Also, sometimes new developers are not fully familiar with GitHub (Vasilescu
et al (2015)). As a result, new developers face various barriers when con-
tributing to an open source project (Steinmacher et al (2018); Zanatta et al
(2017)), such as lack of experience and communication issues (Steinmacher
et al (2018)). Different strategies, such as recruiting mentors, have been sug-
gested in the literature to let new developers better contribute to open source
projects (Steinmacher et al (2012)).

Towards Prioritizing User-Related Issue Reports of Mobile Applications 27

Table 9: The metrics of the ranking model based on top five apps, sorted by
mean decrease in Gini.

Metric Description Gini
Time since reporter has
joined GitHub

Estimates the reporter experience by measuring
the time since the reporter is on GitHub.

89.94

Number of words in body The number of words that is used to report an
issue.

73.43

Reporter contribution The contribution of the reporter is based on the
contribution score that is reported by GitHub.
Github calculates the contribution scores with
respect to the following actions: committing,
opening an issue, proposing a pull request, sub-
mitting a pull request, and co-authoring com-
mits in a repository (GitHub (2018b)).

54.16

Title size The number of words in the title of an issue
report.

51.60

Mean of time since users
who have involved have
joined GitHub

The mean value is calculated by considering all
the users who have involved in an issue report,
including posting a comment and resolving the
issue report.

49.70

Number of sentences in
body

The number of sentences in the body of an issue
report.

45.09

Mean of number of words in
user-reviews

The mean value is calculated by considering the
number of words in each user-review that is re-
lated to the issue report.

44.55

Mean of contribution of
users who have involved in
an issue

The mean value is calculated by considering all
the users who have involved in an issue report,
including posting a comment and resolving the
issue report. The contribution of each person is
calculated by GitHub.

40.46

Number of comments The number of comments that are posted on an
issue report.

39.31

Mean of number of sen-
tences in user-reviews

The mean value of the number of sentences in
the user-reviews that are related to the issue
report.

39.10

Mean of sentiment scores of
user-reviews

The mean value of the sentiment scores of every
user-review that is related to the issue report.

32.65

Mean of numbers of follow-
ers of users who have in-
volved in an issue

The mean value of the number of followers of the
users who have involved in resolving an issue re-
port, including posting a comment and resolving
the issue report.

29.92

Number of gists of reporter The number of gists that the reporter has
shared.

28.43

Mean of star-ratings Average of star-ratings that are associated with
an issue report.

26.63

Median of star-ratings Median of star-ratings that are associated with
an issue report.

24.32

Number of followings The number of users that the reporter follows
them on GitHub.

21.02

Number of repositories of
reporter

The number of repositories which to the re-
porter contributes.

16.63

Proportion of user-reviews
with positive sentiment
scores

The user-reviews with positive sentiment scores
associated with an issue report.

16.13

(continues on next page)

28 Ehsan Noei et al.

Table 9: The metrics of the ranking model based on top five apps (continued).

Metric Description Gini
Proportion of user-reviews
with neutral sentiment
scores

The user-reviews with neutral sentiment scores
associated with an issue report.

8.34

Proportion of user-reviews
with negative sentiment
scores

The user-reviews with negative sentiment scores
associated with an issue report.

7.54

Number of user-reviews The number of user-reviews associated with an
issue report.

7.24

Proportion of user-reviews
with high star-ratings

The user-reviews with high star-ratings associ-
ated with an issue report.

6.76

Proportion of user-reviews
with low star-ratings

The user-reviews with low star-ratings associ-
ated with an issue report.

6.19

Number of followers of re-
porter

The number of users that follow the reporter on
GitHub.

3.58

Mean of numbers of follow-
ings of users who have in-
volved in an issue

The average of the numbers of followings of
users who have involved in an issue, including
posting a comment and resolving the issue re-
port.

3.27

Mean of numbers of reposi-
tories of users who have in-
volved in an issue

The average of the numbers of repositories of
users who have involved in an issue, including
posting a comment and resolving the issue re-
port.

3.00

Proportion of user-reviews
with neutral star-ratings

The user-reviews with neutral star-ratings asso-
ciated with an issue report.

1.84

Mean of numbers of gists of
users who have involved in
an issue

The average of the numbers of gist of users who
have involved in an issue, including posting a
comment and resolving the issue report.

1.82

The size of an issue is the second metric with the highest Gini importance.
Similarly, the size of the user-reviews holds the highest Gini importance among
the user-related metrics. This can denote that developers of top five apps
normally tend to address the user-reviews that have described an issue more
in details.

For the top apps, we could match a higher proportion of user-
reviews to issue reports in comparison with the rest of the apps. As
reported in the first research question (see Section 3), we could match 27% of
the user-reviews with 33% of the issue reports. However, for the top five apps,
52% of the user-reviews are matched with 29% of the issue reports. There is a
notable increase in the proportion of the matches in the user-reviews. However,
there is a small decrease in the proportion of matches in the issue reports, i.e.,
33% to 29%. The top five apps address more issues that are reported in the
user-reviews, while developers keep reporting other issues that may not be
reflected in the user-reviews.

Building a prediction model based on the prioritization strategy of the
top-rated apps can help developers to better prioritize the issue reports.
Apps that have similar prioritizations to the prioritizations recom-
mended by our approach receive higher star-ratings.

Towards Prioritizing User-Related Issue Reports of Mobile Applications 29

4 Threats to Validity

In this section, we discuss the threats to the validity of our study (Yin (2013)).

4.1 Conclusion Validity

Threats to conclusion validity concern the relationship between the treatment
and the outcome. Martin et al. (Martin et al (2015a)) report that using an
incomplete set of user-reviews can introduce bias to the findings of an empirical
study. To eliminate this threat, we take all the user-reviews of our apps into
consideration. The choice of modeling technique is another threat to conclusion
validity. We use the linear regression model in the second research question.
To evaluate the possible threat from the choice of modeling technique, we
repeat our experiment using a multinomial regression model and find that our
conclusion is not affected (i.e., no generic model can be built and the same
trend as in Figure 7 is obtained).

4.2 Internal Validity

Threats to internal validity concern the analysis methods and selection of
subject systems. We select the mobile apps that have more than N matches
between the user-reviews and issue reports. The underlying assumption is that
the apps with fewer matches do not (or rarely) address the issues described in
user-reviews. With our setting (i.e., N = 10) (Khalid et al (2016)), only two of
our apps are outliers, which have a small number of issue reports (i.e., 10 and
11) while more than 50% of their issue reports mapped to the user-reviews.
Our conclusion remains the same with or without the two outlier apps. The
number of comments is one of the metrics that we measured for the issue
reports. Only 1.5% of the comments are “+1 comments” in our study. We
use the reaction time to estimate the prioritization orders. However, such an
estimation may introduce some noises. Nonetheless, unfortunately, there is no
specific indicator that shows the exact priority of an issue report, i.e., the issue
reports are not tagged with specific priority levels. As described in the paper,
we carefully measured the reaction times to mitigate this threat. Finally, we
did not report the recall of our approach as it requires manually matching the
user-reviews with all the issue reports. Instead, we reported the precision.

4.3 External Validity

Threats to external validity concern the possibility to generalize our findings.
Although we only study the open-source apps, the subject apps are from di-
verse categories such as Tools, Video Players & Editors, and Shopping. There-
fore, our subject apps can represent a considerable amount of mobile apps.

30 Ehsan Noei et al.

Nonetheless, future work is welcome to examine our findings on proprietary
mobile apps.

4.4 Reliability Validity

Threats to reliability validity concern the possibilities of replicating this study.
The user-reviews and issue reports of all our subject apps are publicly acces-
sible.

5 Related Work

In this section, we summarize the related work from three aspects: (i) user-
reviews, (ii) issue tracking systems and bug reports, and (iii) issue reports
prioritization.

5.1 User-Reviews

Recent work investigates the user-reviews that are posted in Google Play
Store (Google (2017)) to ease the process of app development and app main-
tenance (Galvis Carreño and Winbladh (2013); Guzman and Maalej (2014);
Iacob and Harrison (2013)).

Chen et al. (Chen et al (2014)) proposed a tool to identify the uninformative
user-reviews and rank the informative ones. Chen et al. (Chen et al (2014))
employed textual analysis to detect the informative user-reviews. Villarroel et
al. (Villarroel et al (2016)) classified and ranked the issues that are reported
in the user-reviews to help app developers in planning for the next releases of
their app. Villarroel et al. (Villarroel et al (2016)) proposed a tool to classify
the user-reviews into the groups of bug reports and feature requests. However,
neither work considers the issue tracking systems in the ranking process. Some
of the issues that are reported in the user-reviews could already have been
reported in the issue tracking systems. Therefore, adding such issues to the
issue tracking system can introduce issue report duplication (Cavalcanti et al
(2013)).

Ciurumelea et al. (Ciurumelea et al (2017)) proposed an approach to or-
ganize user-reviews with respect to different topics, such as performance and
memory. Having the user-reviews organized, they recommend source-code us-
ing code localization. Sorbo et al. (Di Sorbo et al (2016)) presented an ap-
proach to summarize the user-reviews. Iacob and Harrison (Iacob and Harri-
son (2013)) employed LDA (Blei et al (2003)) to extract the feature requests
from user-reviews. They applied LDA on user-reviews and looked for linguistic
rules. Guzman and Maalej (Guzman and Maalej (2014)) presented an approach
to assist developers in analyzing user-reviews. Guzman and Maalej (Guzman
and Maalej (2014)) applied topic modeling techniques on the user-reviews for
extracting features.

Towards Prioritizing User-Related Issue Reports of Mobile Applications 31

Moran et al. (Moran et al (2015)) introduced a tool, called FUSION,
to auto-complete bug reports. Moran et al. (Moran et al (2015)) applied
statistic and dynamic analysis on the decompiled code of Android apps. FU-
SION helps developers in reproducing bugs and auto-completing bug re-
ports. Martin et al. (Martin et al (2015b)) studied the impact of app re-
lease in mobile app stores. Martin et al. (Martin et al (2015b)) observed that
40% of app releases impact performance in Google Play Store. Galvis and
Winbladh (Galvis Carreño and Winbladh (2013)) applied textual analysis on
users’ feedback. They applied topic modeling and sentimental analysis on user-
reviews to assist app developer in the revision of requirements for the next
releases of their apps.

Earlier studies attempted to extract knowledge from user-reviews and ease
the development process. None of the earlier work has integrated the user-
reviews into the process of prioritizing the issue reports of the Android apps
and have not studied the relationship between prioritizing issue reports and
star-ratings.

5.2 Bug Reports and Issue Tracking Systems

The source code and the issue tracking system of the majority of the Android
apps are not publicly available. Thus, the number of papers that study bug
repositories and issue tracking systems of Android apps is not comparable to
the number of papers that study user-reviews.

Some papers are based on empirical studies on characteristics of issue track-
ing systems. Bhattacharya et al. (Bhattacharya et al (2013)) conducted an
empirical study on 24 open-source Android apps. They defined some metrics
of bug report quality and developer involvement. Bhattacharya et al. (Bhat-
tacharya et al (2013)) observed that bug reports are of high quality, espe-
cially the security bug reports have the highest quality among the bug reports.
Palomba et al. (Palomba et al (2015)) studied 100 Android apps. They com-
pared user-reviews with the change log of open-source apps that are available
on GitHub. They reported that implementing the users’ feature requests in
the next releases can increase the star-ratings.

Some recent researches are based on the source-code of the open-source
Android app. Mcdonnell et al. (McDonnell et al (2013)) studied the API up-
date adoption by Android apps. They noticed that about 28% of references are
not up-to-date. They reported that the propagation time of the API references
to be updated is around 14 months. Maji et al. (Maji et al (2010)) applied
a failure characterization study on Android and Symbian apps. They inves-
tigate the relationship between bugs, locations of the bugs in the code and
code changes. Linares-Vásquez et al. (Linares-Vásquez et al (2015)) studied
open-source apps. They noticed that app developers rely on manual execution
of apps and user-reviews to identify performance bugs.

None of the recent work has studied the relationship between prioritization
of issue reports and star-ratings of mobile apps.

32 Ehsan Noei et al.

5.3 Issue Reports Prioritization

In this section, we introduce the related work that concerns the issue reports
prioritization which is mainly done on other eco-systems rather than mobile
apps.

Lamkanfi et al. (Lamkanfi et al (2010)) proposed a severity prediction
approach by analyzing textual description of issue reports of three open-
source communities, including Mozilla, Eclipse and GNOME. They used Näıve
Bayes to label the issue reports as severe or non-severe. Alenezi and Banitaan
in (Alenezi and Banitaan (2013)) employed Näıve Bayes, decision trees, and
random forest to predict the priority of issue reports in Bugzilla (Bugzilla
(2018)). They observed that random forest and decision tree outperform Näıve
Bayes. Yu et al. (Yu et al (2010)) used neural network to prioritize the issue
reports. They showed their approach works better than Näıve Bayes. Kanwal
and Maqbool (Kanwal and Maqbool (2012)) applied Näıve Bayes and SVM
to predict the issue reports prioritization. They observed that SVM is better
than Näıve Bayes when adopting textual metrics, such as issue report descrip-
tions. However, they observed that when considering the categorical metrics,
such as platform, Näıve Bayes performs better than SVM. Menzies and Mar-
cus (Menzies and Marcus (2008)) ranked the terms that appear in the issue
reports by adopting TF-IDF. They used top terms to predict the priority of
issue reports. Tian et al. (Tian et al (2012)) used the similarity between the
current issue reports and the issue reports in the past to estimate the priority
of the new issue reports.

None of the above work incorporates the user-reviews with the issue report
for prioritization. We take the metrics of both issue reports and user-reviews
to prioritize the issue reports.

6 Conclusion

In this paper, we investigate the prioritizations of user-related issue reports
and their relationship with star-ratings. First, we introduce an approach for
mapping user-reviews to issue reports. We perform an empirical study of 326
open-source Android apps that have both user-reviews and issue tracking sys-
tems publicly available. Our approach achieves a precision of 79%. Second, we
observe that prioritizing issue reports is positively related to increases in star-
ratings. Finally, we propose a prioritization prediction method using the top
apps. The prioritization model can be applied to each app to identify the pri-
oritization orders of issue reports. Our results show that the apps with similar
prioritizations to our recommended ones receive higher star-ratings.

In the future, we plan to study the generalizability of our approach more
deeply. For example, we will apply our approach to user-reviews and issue
reports from other app markets and issue tracking systems.

Towards Prioritizing User-Related Issue Reports of Mobile Applications 33

Acknowledgments

We thank the anonymous reviewers who reviewed our paper and the associated
editor for their valuable feedback that helped us improve this work.

References

Alenezi M, Banitaan S (2013) Bug reports prioritization: Which features and
classifier to use? In: 12th International Conference on Machine Learning and
Applications (ICMLA), IEEE, vol 2, pp 112–116

Allacronyms (2017) Acronyms and abbreviations related to computer
science. [Online]. Available: https://www.allacronyms.com/computer-
science/abbreviations

Archer KJ, Kimes RV (2008) Empirical characterization of random forest
variable importance measures. Computational Statistics & Data Analysis
52(4):2249–2260

Basili VR (1992) Software modeling and measurement: the
goal/question/metric paradigm. Tech. rep., Institute for advanced
computer studies

Bavota G, Linares-Vasquez M, Bernal-Cardenas CE, Penta MD, Oliveto R,
Poshyvanyk D (2015) The impact of api change-and fault-proneness on the
user ratings of android apps. IEEE Transactions on Software Engineering
41(4):384–407

Bertram D, Voida A, Greenberg S, Walker R (2010) Communication, collab-
oration, and bugs: the social nature of issue tracking in small, collocated
teams. In: 2010 ACM conference on Computer supported cooperative work,
ACM, pp 29–300

Bhattacharya P, Ulanova L, Neamtiu I, Koduru SC (2013) An empirical anal-
ysis of bug reports and bug fixing in open source android apps. In: 17th Eu-
ropean Conference on Software Maintenance and Reengineering (CSMR),
IEEE, pp 133–143

Biau G, Scornet E (2016) A random forest guided tour. Test 25(2):197–227
Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. The Journal

of Machine Learning Research 3:993–1022
Broder AZ, Glassman SC, Manasse MS, Zweig G (1997) Syntactic clustering

of the web. Computer Networks and ISDN Systems 29(8-13):1157–1166
Bruns A, Kornstadt A, Wichmann D (2009) Web application tests with sele-

nium. IEEE software 26(5)
Bugzilla (2018) Bugzilla. [Online]. Available: https://www.bugzilla.org/
Calders T, Verwer S (2010) Three naive bayes approaches for discrimination-

free classification. Data Mining and Knowledge Discovery 21(2):277–292
Cavalcanti YC, Neto PAdMS, Lucrédio D, Vale T, de Almeida ES,

de Lemos Meira SR (2013) The bug report duplication problem: an ex-
ploratory study. Software Quality Journal 21(1):39–66

34 Ehsan Noei et al.

Chen N, Lin J, Hoi SC, Xiao X, Zhang B (2014) Ar-miner: mining informative
reviews for developers from mobile app marketplace. In: 36th International
Conference on Software Engineering, ACM, pp 767–778

Ciurumelea A, Schaufelbhl A, Panichella S, Gall H (2017) Analyzing reviews
and code of mobile apps for better release planning. In: 24th International
Conference on Software Analysis Evolution and Reengineering, IEEE

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal ques-
tions. Psychological Bulletin 114(3):494

Cohen J (2013) Statistical power analysis for the behavioral sciences. Academic
press

De Marneffe MC, MacCartney B, Manning CD, et al (2006) Generating typed
dependency parses from phrase structure parses. In: 5th International Con-
ference on Language Resources and Evaluation, vol 6, pp 449–454

Developer G (2018) Github developer. [Online]. Available:
https://developer.github.com/v3/

Di Sorbo A, Panichella S, Alexandru CV, Shimagaki J, Visaggio CA, Canfora
G, Gall HC (2016) What would users change in my app? summarizing app
reviews for recommending software changes. In: Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ACM, pp 499–510

Ester M, Kriegel HP, Sander J, Xu X, et al (1996) A density-based algorithm
for discovering clusters in large spatial databases with noise. In: 2nd Inter-
national Conference on Knowledge Discovery and Data Mining, vol 96, pp
226–231

Faraway JJ (2005) Extending the linear model with R: generalized linear,
mixed effects and nonparametric regression models. CRC press

FDroid (2017) F-droid. [Online]. Available: http://www.f-droid.org/
Galvis Carreño LV, Winbladh K (2013) Analysis of user comments: an ap-

proach for software requirements evolution. In: 35th International Confer-
ence on Software Engineering, IEEE, pp 582–591

GitHub (2018a) Github. [Online]. Available: http://www.github.com/
GitHub (2018b) Github help. [Online]. Available:

https://help.github.com/articles/viewing-contributions-on-your-profile/
Google (2017) Google play store. [Online]. Available: http://play.google.com/
Gousios G (2013) The ghtorrent dataset and tool suite. In: 10th Working

Conference on Mining Software Repositories, IEEE Press, Piscataway, NJ,
USA, MSR ’13, pp 233–236

Guzman E, Maalej W (2014) How do users like this feature? a fine grained
sentiment analysis of app reviews. In: 22nd International Conference on
Requirements Engineering, IEEE, pp 153–162

Hmisc (2017) Harrell miscellaneous. [Online]. Available: http://cran.r-
project.org/web/packages/Hmisc/index.html

Ho TK (1995) Random decision forests. In: Third International Conference on
Document Analysis and Recognition, IEEE, vol 1, pp 278–282

Iacob C, Harrison R (2013) Retrieving and analyzing mobile apps feature re-
quests from online reviews. In: 10th Working Conference on Mining Software

Towards Prioritizing User-Related Issue Reports of Mobile Applications 35

Repositories, IEEE, MSR ’13, pp 41–44
Islam MR, Zibran MF (2017) Leveraging automated sentiment analysis in

software engineering. In: 14th International Conference on Mining Software
Repositories, IEEE Press, pp 203–214

Janák J (2009) Issue tracking systems. Brno, spring
Jazzy (2017) Jazzy spell checker. [Online]. Available:

http://jazzy.sourceforge.net/
Kanwal J, Maqbool O (2012) Bug prioritization to facilitate bug report triage.

Journal of Computer Science and Technology 27(2):397–412
Kelley TL (1947) Fundamentals of statistics. Harvard University Press
Khalid H, Nagappan M, Shihab E, Hassan AE (2014) Prioritizing the devices

to test your app on: A case study of android game apps. In: 22nd Interna-
tional Symposium on the Foundations of Software Engineering, pp 370–379

Khalid H, Nagappan M, Hassan AE (2016) Examining the relationship be-
tween findbugs warnings and app ratings. IEEE Software 33(4):34–39

Kim HW, Lee H, Son J (2011) An exploratory study on the determinants of
smartphone app purchase. In: 11th International DSI and the 16th APDSI
Joint Meeting

Kim SM, Pantel P, Chklovski T, Pennacchiotti M (2006) Automatically assess-
ing review helpfulness. In: 2006 Conference on empirical methods in natural
language processing, Association for Computational Linguistics, pp 423–430

Lamkanfi A, Demeyer S, Giger E, Goethals B (2010) Predicting the severity
of a reported bug. In: 7th IEEE Working Conference on Mining Software
Repositories (MSR), IEEE, pp 1–10

Liaw A, Wiener M (2002) Classification and regression by randomforest. R
news 2(3):18–22

Linares-Vásquez M, Vendome C, Luo Q, Poshyvanyk D (2015) How developers
detect and fix performance bottlenecks in android apps. In: 31st Conference
on Software Maintenance and Evolution, IEEE, pp 352–361

Lovins JB (1968) Development of a stemming algorithm. MIT Information
Processing Group, Electronic Systems Laboratory

Maji AK, Hao K, Sultana S, Bagchi S (2010) Characterizing failures in mobile
oses: A case study with android and symbian. In: 21st International Sym-
posium on Software Reliability Engineering (ISSRE), IEEE, pp 249–258

Mann HB, Whitney DR (1947) On a test of whether one of two random vari-
ables is stochastically larger than the other. The annals of mathematical
statistics pp 50–60

Manning CD, Surdeanu M, Bauer J, Finkel J, Bethard SJ, McClosky D (2014)
The stanford corenlp natural language processing toolkit. In: 52nd Annual
Meeting of the Association for Computational Linguistics: System Demon-
strations, pp 55–60

Martin W, Harman M, Jia Y, Sarro F, Zhang Y (2015a) The app sampling
problem for app store mining. In: 12th Working Conference on Mining Soft-
ware Repositories, IEEE, pp 123–133

Martin W, Sarro F, Harman M (2015b) Causal impact analysis applied to app
releases in google play and windows phone store. RN 15:07

36 Ehsan Noei et al.

McDonnell T, Ray B, Kim M (2013) An empirical study of api stability and
adoption in the android ecosystem. In: 29th International Conference on
Software Maintenance, IEEE, pp 70–79

Menzies T, Marcus A (2008) Automated severity assessment of software defect
reports. In: International Conference on Software Maintenance, IEEE, pp
346–355

Miller GA (1995) Wordnet: a lexical database for english. Communications of
the ACM 38(11):39–41

Moran K, Linares-Vásquez M, Bernal-Cárdenas C, Poshyvanyk D (2015) Auto-
completing bug reports for android applications. In: 10th Joint Meeting on
Foundations of Software Engineering, ACM, pp 673–686

Nelder JA, Baker RJ (1972) Generalized linear models. Encyclopedia of sta-
tistical sciences

Netlingo (2017) Top 50 most popular text terms. [Online]. Available:
http://www.netlingo.com/top50/popular-text-terms.php

Nguyen TH, Adams B, Hassan AE (2010) Studying the impact of dependency
network measures on software quality. In: 26th International Conference on
Software Maintenance, IEEE, pp 1–10

Noei E, Heydarnoori A (2016) Exaf: A search engine for sample applications
of object-oriented framework-provided concepts. Information and Software
Technology 75:135–147

Noei E, Syer MD, Zou Y, Hassan AE, Keivanloo I (2017) A study of the rela-
tion of mobile device attributes with the user-perceived quality of android
apps. Empirical Software Engineering 22(6):3088–3116

Noei E, Da Costa DA, Zou Y (2018) Winning the app production rally. In:
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ACM, New
York, NY, USA, ESEC/FSE 2018, pp 283–294

Nord C (2005) Text analysis in translation: Theory, methodology, and didactic
application of a model for translation-oriented text analysis. 94, Rodopi

Optimaize (2017) Language detection library for java. [Online]. Available:
https://github.com/optimaize/language-detector/

Palomba F, Linares-Vásquez M, Bavota G, Oliveto R, Di Penta M, Poshyvanyk
D, De Lucia A (2015) User reviews matter! tracking crowdsourced reviews
to support evolution of successful apps. In: 31st International Conference
on Software Maintenance and Evolution, IEEE, pp 291–300

Panichella S, Di Sorbo A, Guzman E, Visaggio C, Canfora G, Gall H (2015)
How can i improve my app? classifying user reviews for software maintenance
and evolution. In: 31st International Conference on Software Maintenance
and Evolution

Rajaraman A, Ullman JD, Ullman JD, Ullman JD (2012) Mining of massive
datasets, vol 77. Cambridge University Press Cambridge

Romero DM, Galuba W, Asur S, Huberman BA (2011) Influence and passivity
in social media. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Springer, pp 18–33

Towards Prioritizing User-Related Issue Reports of Mobile Applications 37

Salton G, Michael J (1983) Mcgill. Introduction to modern information re-
trieval pp 24–51

Salton G, Wong A, Yang CS (1975) A vector space model for automatic in-
dexing. Communications of the ACM 18(11):613–620

Selenium (2017) Selenium - web browser automation. [Online]. Available:
http://seleniumhq.org/

Snowball (2018) Snowball. [Online]. Available: http://snowballstem.org/
Statista (2017a) Number of apps available in lead-

ing app stores as of march 2017. [Online]. Available:
http://www.statista.com/statistics/276623/number-of-apps-available-
in-leading-app-stores

Statista (2017b) Number of smartphone users worldwide
from 2014 to 2020 (in billions). [Online]. Available:
https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide

Stats A (2016) Number of android applications. [Online]. Available:
http://www.appbrain.com/stats/number-of-android-apps

Steinmacher I, Wiese IS, Gerosa MA (2012) Recommending mentors to soft-
ware project newcomers. In: Proceedings of the Third International Work-
shop on Recommendation Systems for Software Engineering, IEEE Press,
pp 63–67

Steinmacher I, Treude C, Gerosa M (2018) Let me in: Guidelines for the suc-
cessful onboarding of newcomers to open source projects. IEEE Software

Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest
variable importance measures: Illustrations, sources and a solution. BMC
bioinformatics 8(1):25

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empir-
ical comparison of model validation techniques for defect prediction models.
IEEE Transactions on Software Engineering 43(1):1–18

Tian Y, Lo D, Sun C (2012) Information retrieval based nearest neighbor clas-
sification for fine-grained bug severity prediction. In: Reverse Engineering
(WCRE), 2012 19th Working Conference on, IEEE, pp 215–224

Van Solingen R, Basili V, Caldiera G, Rombach HD (2002) Goal question
metric (gqm) approach. Encyclopedia of software engineering

Vasilescu B, Filkov V, Serebrenik A (2015) Perceptions of diversity on github:
A user survey. In: Proceedings of the Eighth International Workshop on
Cooperative and Human Aspects of Software Engineering, IEEE Press, pp
50–56

Villarroel L, Bavota G, Russo B, Oliveto R, Di Penta M (2016) Release plan-
ning of mobile apps based on user reviews. In: 38th International Conference
on Software Engineering, ACM, pp 14–24

Xuan J, Jiang H, Ren Z, Zou W (2012) Developer prioritization in bug reposi-
tories. In: Software Engineering (ICSE), 2012 34th International Conference
on, IEEE, pp 25–35

Yin RK (2013) Case study research: Design and methods. Sage publications

38 Ehsan Noei et al.

Yu L, Tsai WT, Zhao W, Wu F (2010) Predicting defect priority based on
neural networks. In: International Conference on Advanced Data Mining
and Applications, Springer, pp 356–367

Yu Y, Wang H, Filkov V, Devanbu P, Vasilescu B (2015) Wait for it: deter-
minants of pull request evaluation latency on github. In: Mining software
repositories (MSR), 2015 IEEE/ACM 12th working conference on, IEEE,
pp 367–371

Zanatta AL, Steinmacher I, Machado LS, de Souza CR, Prikladnicki R (2017)
Barriers faced by newcomers to software-crowdsourcing projects. IEEE Soft-
ware 34(2):37–43

Zhang F, Mockus A, Keivanloo I, Zou Y (2015) Towards building a universal
defect prediction model with rank transformed predictors. Empirical Soft-
ware Engineering pp 1–39

	Introduction
	Experiment Setup
	Research Questions and Results
	Threats to Validity
	Related Work
	Conclusion

