
A Survey of Utilizing User-Reviews Posted on Google Play Store
Ehsan Noei

e.noei@utoronto.ca

University of Toronto

Kelly Lyons

kelly.lyons@utoronto.ca

University of Toronto

ABSTRACT
Mobile application (app) markets, such as Google Play Store, provide
a rating mechanism for users to rate the hosted apps and leave

comments and feedback (i.e., user-reviews). User-reviews contain

valuable information, such as bug reports, feature requests, and user

experiences. Recent studies have shown the unavoidable impact of

studying users’ feedback on the success of an app, whereas ignoring

users’ feedback can endanger the survival of an app in an app

market. In this paper, we survey the research papers and solutions

that can help developers and researchers to utilize user-reviews and

integrate them into the app development process. We provide an

overview of each work, briefly explain their applications, and finally

mention the limitations. Moreover, derived from the existing body

of research, we provide a guideline for researchers and developers,

showing them how to collect, preprocess, and analyze user-reviews.

Finally, we conclude the survey and provide directions for future

research.

CCS CONCEPTS
• Software and its engineering→ Software development pro-
cess management; • Machine learning → Machine learning
algorithms; • Information systems → Data extraction and
integration.

KEYWORDS
User-review, Crowdsourcing, Data mining, Mobile application, Soft-

ware maintenance

ACM Reference Format:
Ehsan Noei and Kelly Lyons. 2019. A Survey of Utilizing User-Reviews

Posted on Google Play Store. In CASCON ’19. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Google Play Store has become an immensely competitive market

for app developers due to the rapid increase in the number of mobile

apps and smartphone users [67]. Google Play Store hosted more

than two million Android apps at the time of this research [19].

As shown in Figure 1, Android app developers can publish their

apps on Google Play Store, so users would be able to view the

published apps and install them on their devices. Moreover, for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CASCON ’19, November 2019, Toronto, Ontario, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

Download App

Modify App

Create App

Release App
Update App

View/Post FeedbackView/Reply to Feedback

Figure 1: Overview of developers and users interactions.

each published app, Google Play lets users leave their comments

and feedback (i.e., user-review). A user-review is an informal piece

of text without a predefined structure [57] and it can contain sev-

eral useful information, such as bug reports, feature requests, and

reports of user experience [16, 57, 60].

Recent studies (e.g., [17, 56, 59, 60, 62]) have shown the impor-

tance of studying user-reviews, identifying bug reports and feature

requests from them, and having them addressed in the next re-

leases. For example, Noei et al. [52] observed that developers who

address the issues that are reported in the user-reviews tend to be

more successful than the ones who rarely address such issues. In

addition, Noei et al. [52] reported that developers should not wait

too long to release a newer version of an app. In another study

Noei et al. [57] studied open-source Android apps that are available
on both Google Play Store and GitHub [18]. They observed that

addressing the issue reports that are more similar to the ones in

the user-reviews share a statistically significant relationship with

positive changes in star-ratings. Villarroel et al. [70] proposed a

solution to classify user-reviews into clusters of bug reports and
feature requests, and, thereby, helping developers in their release

planning. Villarroel et al. [70] also ranked clusters of user-reviews

based on some metrics such as the number of user-reviews and

star-ratings.

This paper provides a survey of existing research work on uti-

lizing user-reviews. Both researchers and developers should learn

about state-of-the-art solutions to process, analyze, and utilize user-

reviews. For each paper, we provide an overview of the work, its

applications, and limitations. Therefore, researchers would be able

to tackle open problems and challenges more effectively. In addition,

by learning from the existing work, we provide a set of recommen-

dations and techniques for developers and researchers, along with

the steps that should be taken, in order to utilize user-reviews

efficiently.

Paper Organization. We proceed by providing background in-

formation in Section 2. Then, in Section 3, the surveyed papers

are introduced and discussed. Section 4 explains the implications

of the existing work for both developers and researchers. Finally,

Section 5 concludes the paper and provides directions for future

research.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CASCON ’19, November 2019, Toronto, Ontario, Canada Ehsan Noei and Kelly Lyons

2 BACKGROUND
Google Play Store provides a platform for app developers to publish

their apps and introduce them to users. Figure 1 shows an overview

of interactions between users and developers on Google Play Store.

As shown in Figure 1, once developers created a new app ormodified

their existing apps, they would be able to publish (i.e., release) it

on the Google Play Store platform. Users can search, view, and

download the published apps, or update their already installed apps

using the Google Play Store app on their mobile devices. Users

can also post their feedback for each app. Developers can view the

received feedback and respond to any desired feedback.

2.1 Users’ Feedback
Users can rate each app and associate their ratings with user-

reviews.

Star-Ratings. Google Play Store uses the star-rating mechanism

to capture and demonstrate ratings. By the star-rating mechanism,

users can rate each app from one star (the lowest) to five stars (the

highest). However, unfortunately, there is no predefined standard or

agreement on the meaning of star-ratings. For example, a user may

interpret a three-star rating as an excellent rating, while another

user may perceive it as a horrendous rating.

Star-ratings impact the income of app developers and app devel-

opment companies [5, 38] as users rely on star-ratings for choosing

an app to download [5, 51]. Users usually do not download and

install an app with an average star-rating of less than three [54, 55].

Moreover, Harman et al. [26] reported a statistically significant

relationship between the number of downloads and star-ratings.

As a result, low-rated apps will lose their chance of surviving and

succeeding in the competitive market of mobile apps. Developers

should refer to the existing body of knowledge (e.g., [16, 17, 51, 54,

56, 57, 59, 60, 62]) to understand the factors that share a significant

relationship with star-ratings. Thus, they would proactively quan-

tify the expected star-ratings prior to releasing a newer version.

Advantages of the Star-Rating Mechanism. The star-rating
mechanism provides users with an easy solution to rate their apps.

Simply, users can give a five-star rating if they are completely

satisfied with an app. Conversely, they can leave a one-star rating

if they are utterly unhappy with an app.

Moreover, as star-ratings are just integer numbers between one

and five, the star-rating mechanism makes it easy for developers

and the Google itself to interpret, summarize, and visualize the

given star-ratings.

Disadvantages of the Star-Rating Mechanism. Despite the
convenience of the star-rating mechanism for users, developers,

and the Google, the definition of star-ratings is not clear for both

developers and users. For example, two users with the same user-

experience may give two- or three-star ratings to the same app

based on their personal interpretation of star-ratings. Different

perceptions of star-ratings causes having star-ratings that are in-

consistent with their associated user-reviews. For instance, consider

the two user-reviews in Figure 2. The first user-review delivers pos-

itive feedback from the user, but it is associated with only a one-star

rating. Interestingly, the second user-review is associated with a

“ Amazing! This app is the best and one of my
favorites”

Star-rating: 1 star.

“ Terrible this is so bad many glitches this game
makes me want to throw up”

Star-rating: 5 stars.

Figure 2: Examples of inconsistent user-reviews.

five-star rating! Inconsistent user-reviews introduce noises to sta-

tistical analyses. Noei et al. [57] and Fu et al. [16] have proposed
solutions to filter-out inconsistent user-reviews (see Section 4.2).

Another major issue with the star-rating mechanism is that it

can endanger the survival of an app as star-ratings are resilient

to change once a substantial number of users rated an app [65].

It is recommended by Ruiz et al. [65] to remove an app that has

received a very low star-rating and have it released as a new app

instead of releasing a newer version. This issue will remain until

Google modifies the star-rating mechanism and have the overall

star-ratings calculated based on the most recent star-ratings or the

star-ratings received for the most recent releases.

User-Reviews. A user-review is an informal piece of text with-

out a predefined structure [57]. User-reviews are associated with

star-ratings. Figure 2 provides two example user-reviews associ-

ated with star-ratings. User-Reviews are an important source of

knowledge for app developers as they contain critical information,

such as bug reports, feature requests, and user experiences [16, 60].

Recent studies have shown that addressing the issues reported in

user-reviews helps developers to improve their apps, and, conse-

quently, improve their star-ratings and ranks [52, 56]. The most

important pieces of information hidden in the user-reviews are [51]

(i) expectations of users from an app, (ii) users’ concerns, (iii) fea-

ture requests, (iv) bug reports, and (v) guidelines for a better release

planning [51]. Unfortunately, due to the uninstructed nature of

user-reviews, developers need to take various steps to clean up the

user-reviews first (see Section 4).

Developers’ Response. App developers can choose to respond

to each user-review by posting a reply text. McIlroy et al. [44]
studied 10, 713 apps and reported that only 13.8% of apps respond

to user-reviews. They also reported that 38.7% of negative user-

reviews turned into positive ones after getting a proper response

from developers explaining that they have addressed the issue or

resolved the problem.

2.2 Continuous App Development
To succeed in the competitive market of mobile apps, developers

adopt a continuous development paradigm [1, 47, 49]. The con-

tinuous app development is the process of continuously releasing

A Survey of Utilizing User-Reviews Posted on Google Play Store CASCON ’19, November 2019, Toronto, Ontario, Canada

Preprocess
Knowledge
Extraction

Knowledge
Utilization

User-Reviews

App
Modification

Release

Google Play
Store

Figure 3: Knowledge extraction and utilization process.

high-quality versions of an app. To this end, developers need to

analyze user-reviews and find out users’ demands, concerns, issues,

and feature requests. Figure 3 shows an overview of the knowledge

extraction and utilization process. As shown in Figure 3, develop-

ers need to constantly investigate the user-reviews and have them

addressed in the next releases. Noei et al. [52] showed that the apps
that fail to continuously improve their apps will eventually lose

their ranks in Google Play Store.

3 SURVEYED PUBLICATIONS
In this section, the research papers that help developers and re-

searchers to summarize user-reviews are introduced and discussed.

Please note that, in this work, we do not cover all the existing work

that utilizes user-reviews. For a more complete list of such stud-

ies please check the survey paper “a survey of app store analysis

for software engineering” by Martin et al. [42]. Our criteria for

choosing the papers are:

� Made a significant contribution at the time the research was

published.

� Introduced an approach that can potentially help develop-

ers and researchers to better comprehend and utilize user-

reviews.

� The proposed solution is useful and applicable as the time

of this research.

Table 1 illustrates a timeline of the related studies and the venue

in which each of them has been published. We find all the listed

publications valuable where each of them can help developers and

researchers from a different perspective. Therefore, we do not sort

them based on specific criteria. For each study, first, we provide a

brief overview; then, we discuss its applications and limitations.

Goul et al. [21]
Overview. Goul et al. [21] applied sentiment analysis on 5, 000

user-reviews in order to facilitate the app requirements engineer-

ing. Goul et al. [21] reported that sentence-level and feature-based

sentiment analysis is an informative solution for identifying user

requirements.

Application. According to Goul et al. [21], users’ sentiments are

important assets for app developers when investigating app require-

ments. App developers should carefully consider users’ sentiments

in order to better identify user requirements.

Limitation. The study by Goul et al. [21] was based on the data

from Apple App Store [3]. However, we included their work in

Table 1: Related work in chronological order, along with the
venue in which each of them has been published.

Year Work Venue

2012 • Goul et al. [21] HICSS

2013 • Galvis and Winbladh [17] ICSE

2013 • Iacob and Harrison [31] MSR

2013 • Fu et al. [16] KDD

2014 • Chen et al. [10] ICSE

2014 • Khalid et al. [37] TSE

2015 • Guzman et al. [23, 24] ASE, ESEM

2015 • Moran et al. [46] FSE

2015 • Panichella et al. [62] ICSME

2015 • Gu and Kim [22] ASE

2016 • McIlroy et al. [43] EMSE

2016 • Panichella et al [63] FSE

2016 • Di Sorbo et al. [14] FSE

2016 • Villarroel et al. [70] ICSE

2017 • Ciurumelea et al. [11] SANER

2017 • Palomba et al. [61] ICSE

2018 • Noei et al. [52] FSE

2018 • Hassan et al. [27] EMSE

2019 • Noei et al. [56] EMSE

2019 • Noei et al. [57] TSE

this survey as it was one of the earliest attempts for putting users’

feedback to use [42].

Galvis and Winbladh [17]
Overview. Galvis andWinbladh [17] studied user-reviews in order

to identify the changes that need to be made for the next releases of

an app. Galvis andWinbladh [17] suggested a solution for extracting

user requirements from user-reviews by applying topic modeling

on user-reviews.

Application. The Galvis and Winbladh [17] solution is a straight-

forward approach for developers. Their approach is a fast and cheap

solution that works better than manually analyzing user-reviews.

Limitation. Galvis andWinbladh [17] identified user requirements

using a sentiment-aware topic model (i.e., ASUM model [35]). How-

ever, even though it improves the requirements summation process,

it cannot find all the possible requirements.

Iacob and Harrison [31]
Overview. Iacob and Harrison [31] proposed a solution, called

MARA, by applying linguistic rules on user-reviews in order to ex-

tract feature requests from them. Iacob and Harrison [31] manually

trained their linguistic rules using 161 apps and 3, 279 user-reviews.

They evaluated their trained models using 136, 998 user-reviews. Ia-

cob and Harrison [31] observed that 23.3% of user-reviews contain

feature requests.

Application. By employing MARA, developers would be able to

identify the features requested by users. Iacob and Harrison [31]

CASCON ’19, November 2019, Toronto, Ontario, Canada Ehsan Noei and Kelly Lyons

also identified the topics of user-reviews that are associated with

user-reviews.

Limitation. Due to the unstructured format of user-reviews and

existence of typos and grammatical issues in user-reviews [56],

applying linguistic rules may not successfully find all the feature

requests reported in user-reviews. However, such an approach can

be improved by preprocessing user-reviews (see Section 4).

Fu et al. [16]
Overview. Fu et al. [16] proposed a solution, called WisCom, to

summarize user-reviews in three levels of (i) comments, (ii) apps,

and (iii) app market. Fu et al. [16] applied topic modeling and built

a linear regression model with the star-ratings as the dependent

variable and user-reviews as the independent variable.

Application. WisCom is easily scalable and it can analyze millions

of user-reviews. Fu et al. [16] also reported the top three complained

aspects for each app category (e.g., business and medical), which
can provide developers with more insights into user complaints.

Limitation. Fu et al. [16] applied their solution on over 13 million

user-reviews. However, due to Google Play Store limitations, one

cannot access a large number of user-reviews at once. Therefore,

replication of such a study might not be feasible for future research.

Chen et al. [10]
Overview. Chen et al. [10] trained a classifier to distinguish be-

tween informative and uninformative user-reviews (see Section 4.2).

Almost half the user-reviews contain no valuable information for

developers but expressing users’ praises or hatreds. By having the

uninformative user-reviews identified and removed, developers

would be able to focus on the feedback that can actually help them

to improve their apps. Chen et al. [10] also grouped the informa-

tive user-reviews using topic modeling and ranked the grouped

user-reviews by considering various metrics such as star-ratings.

Application. Chen et al. [10] trained a classifier which is a prac-

tical yet simple solution for identifying informative user-reviews.

Many recent studies, such as Nayebi at al. [48], adopted their ap-

proach to identify and remove inconsistent user-reviews.

Limitation. Removing uninformative user-reviews is not always

the best solution. Recent studies [56, 70] showed that grouping

uninformative set of user-reviews together may produce an infor-

mative set of user-reviews. Moreover, user-reviews are associated

with star-ratings and users’ sentiments where both are valuable

assets for developers and researchers.

Khalid et al. [37]
Overview. Khalid et al. [37] identified 12 major topics of user

complaints from user-reviews by manually investigating a set of

user-reviews. Their identified topics are (i) app crashing, (ii) compat-

ibility app, (iii) feature removal, (iv) feature request, (v) functional

error, (vi) hidden cost, (vii) interface design, (viii) network prob-

lem, (xi) privacy and ethical, (x) resource heavy, (xi) uninteresting

content, and (xii) unresponsive app.

Application. The observations made by Khalid et al. [37] can help

developers and researchers to better understand user-reviews and

users’ complaints. Khalid et al. [37] reported that functional errors,

feature requests, and app crashes are the most frequent complaints.

They also observed that, in 11% of the user-reviews, users are com-

plaining about the changes after an update.

Limitation. Khalid et al. [37] trained their models using user-

reviews from Apple App Store which may not be generalizable

to Android ecosystem [29].

Guzman et al. [23, 24]
Overview. Guzman et al. [23, 24] extended their earlier work [25]

in which they studied users’ sentiment scores for apps from both

Google Play Store and Apple App Store. Guzman et al. [23] proposed
a tool, called Diverse, that identifies the user-reviews that mention

similar features and have similar sentiment scores.

Application. Developers can use Diverse to query different fea-

tures from their user-reviews. Guzman et al. [24] also classified

user-reviews into seven topics of (i) bug reports, (ii) feature strength,

(iii) feature shortcoming, (iv) user request, (v) praise, (vi) complaint,

and (vii) usage scenario. Guzman et al. [24] achieved a precision of

0.74 and a recall of 0.59 on average.

Limitation. Diverse relies on user-reviewswhich are uninstructed
pieces of text and can be uninformative [10]. However, this limita-

tion can bemitigated by clustering related user-reviews together [56]

(see Section 4.2).

Moran et al. [46]
Overview. Moran et al. [46] introduced a tool, called Fusion, to

help developers manage the bug reports mentioned in user-reviews.

They also applied statistic and dynamic analysis on the source code

or decompiled code (i.e., byte-code) of their subject apps.

Application. Developers can use Fusion as a systematic solution

for resolving bug reports as it links users’ feedback to the source

code. Therefore, developers can better reproduce bugs reports.

Limitation. Moran et al. [46] evaluated their approach using 15

bug reports of only 14 apps hosted on F-Droid app market [15]. The

generalizability of their approach and the types of bug reports that

it can address is not clear.

Panichella et al. [62]
Overview. Panichella et al. [62] manually analyzed a set of user-

reviews and emails at a sentence-level granularity. Panichella et
al. [62] identified five topics of user-reviews, including (i) feature

requests, (ii) opinion asking, (iii) problem discovery, (iv) solution

proposal, (v) information seeking, and (vi) information giving. Then,

they applied natural language processing and sentiment analysis

techniques on user-reviews to identify and extract feature requests.

Panichella et al. [62] used the extracted features to classify user-

reviews, so developers can better improve their apps.

Application. By applying Panichella et al. [62] approach, devel-
opers should be able to identify relevant information from user-

reviews, and, therefore, be more responsive to users’ feedback.

A Survey of Utilizing User-Reviews Posted on Google Play Store CASCON ’19, November 2019, Toronto, Ontario, Canada

Limitation. Panichella et al. [62] have only considered five topics

of user-reviews which should not be enough due to the wide range

of existing apps on Google Play Store with various functionalities

and purposes [2].

Gu and Kim [22]
Overview. Gu and Kim [22] proposed a tool, called SUR-Miner,

that summarizes and visualizes user-reviews. Gu and Kim [22]

classified user-reviews, applied text analysis techniques, such as

parsing user-reviews, and conducted sentiment analysis on user-

reviews. By surveying actual developers, Gu and Kim [22] reported

that the majority of developers agreed that their proposed tool

could be useful in practice.

Application. SUR-Miner can be used by developers to understand

user-reviews. Also, visualizing users’ feedback can help developers

to better plan for their next releases.

Limitation. Gu and Kim [22] evaluated their approach using 17

popular apps and achieved an F1-measure of 0.81. However, their

findings may vary on less popular apps with a limited number of

user-reviews. Moreover, Gu and Kim [22] only considered five broad

topics of user-reviews which should not be enough to study all the

various demands and concerns that are mentioned in user-reviews.

McIlroy et al. [43]
Overview. McIlroy et al. [43] studied user-reviews of 20 apps.

They found that users report different issues, including feature

requests and bug reports, in a single user-review. McIlroy et al. [43]
proposed a solution to assign multiple labels to user-reviews. They

reported precision of up to 66% and recall of up to 65% for their

labeling solution. Also, by manually analyzing a sample of user-

reviews, McIlroy et al. [43] identified 14 types of issues, including

(i) additional cost, (ii) functional complaint, (iii) compatibility issue,

(iv) crashing, (v) feature removal, (vi) feature request, (vii) network

problem, (viii) other, (ix) privacy and ethical issue, (x) resource

heavy, (xi) response time, (xii) uninteresting content, (xiii) update

issue, and (xiv) user interface.

Application. Developers and researchers can useMcIlroy et al. [43]
solution to label user-reviews. This will reduce the time and effort

required to manage and analyze user-reviews.

Limitation. McIlroy et al. [43] used a limited number of apps

(i.e., 20) to identify the labels which shall not a be representative

sample set. Future research should replicate their study using a

larger set of apps.

Panichella et al [63]
Overview. Panichella et al. [63] applied natural language process-

ing, text analysis, and sentiment analysis techniques to classify

user-reviews into five main topics, including (i) information giving,

(ii) information seeking, (iii) feature requests, (iv) problem discov-

ery, and (v) others. They achieved a precision between 84% and 89%,

a recall between 84% and 89%, and an F1-measure between 84% and

89% when classifying user-reviews from a maintenance point of

view.

Application. Panichella et al. [63] have provided a tool, called

ARdoc. Developers and researchers can use ARdoc to have their

user-reviews classified into one of the five aforementioned topics.

Therefore, developers shouldmanage their time and resources when

studying user-reviews.

Limitation. Although Panichella et al. [63] provided a practical

tool for classifying user-reviews, their number of topics of user-

reviews is limited (i.e., five broad topics). Therefore, developers may

still need to look into each category of user-reviews in order to

figure out users’ exact demands and concerns.

Di Sorbo et al. [14]
Overview. Di Sorbo et al. [14] proposed an approach, called Surf,

to summarize user-reviews. Di Sorbo et al. [14] employed two levels

of classification: (i) intention classification [63], and (ii) topic classi-

fication. The intentions are the same topics as in their earlier work

discussed above [62, 63]. Di Sorbo et al. [14] introduced 12 more

topics on top their five intentions, including (i) app, (ii) graphical

user-interface, (iii) contents, (iv) pricing, (v) feature or functional-

ity, (vi) improvement, (vii) updates/versions, (viii) resources, (xi)

security, (x) download, (xi) model, and (xii) company.

Application. Di Sorbo et al. [14] attempted to resolve the limita-

tion of only five intentions by adding 12 more topics on top of those

intentions. Therefore, by applying their approach, developers can

have a more precise understanding of the received feedback. Di

Sorbo et al. [14] surveyed seven developers and the results show

that developers find the summaries generated by their tool useful.

Limitation. Although Di Sorbo et al. [14] was an improvement

over their previous work, there still exist a notable number of topics,

such as speed and advertisement, which are not covered by their

approach as they manually identified the topics.

Villarroel et al. [70]
Overview. Villarroel et al. [70] proposed a tool, called Clap, to

classify user-reviews into two major groups of bug reports and

feature requests. Villarroel et al. [70] clustered similar user-reviews

and ranked the clusters of user-reviews based on several metrics,

including (i) the number of reviews in a cluster, (ii) the average

rating of a cluster, (iii) the difference between the average rating of

a cluster and average rating of an app, (iv) the average difference

of the ratings assigned by users in the cluster who reviewed older

releases of an app, and (v) the number of different hardware devices

in a cluster.

Application. Clap can help app developer in planning for the

next releases of their apps by having similar user-reviews grouped

together and ranked. Developers can investigate the clusters of

user-reviews based on their priority and address users’ feedback in

the next releases.

Limitation. Based on their evaluation [70], 66% of user-reviews

get categorized as “other" instead of feature request or bug report.
Considering the reported recall, 76% for bug reports and 67% for

feature requests, 24% and 33% of bug reports and feature requests

are missed, respectively. Moreover, Villarroel et al. [70] considered
the number of star-ratings as one of the main factors when ranking

CASCON ’19, November 2019, Toronto, Ontario, Canada Ehsan Noei and Kelly Lyons

the clusters of user-reviews. However, Noei et al. [57] reported that
the number of user-reviews is not always a correct indicator for the

importance of an issue. In some cases, users may report an issue

or request a feature frequently, but it may impact neither users’

satisfaction nor star-ratings.

Ciurumelea et al. [11]
Overview. Ciurumelea et al. [11] created a two-level taxonomy

of concepts from user-reviews. In the highest level, they defined

(i) compatibility, (ii) usage, (iii) resources, (iv) pricing, and (v) pro-

tection. On top of their taxonomy, they proposed an approach,

called UUR, to organize user-reviews concerning users’ requests.

Therefore, by having the user-reviews organized, Ciurumelea et
al. [11] could suggest some source code modifications using code

localization techniques [66].

Application. By employing the approach proposed by Ciurume-

lea et al. [11], developers would be able to identify the files that are

related to the categorized user-reviews. This could save developers

time and resources when addressing the user-reviews.

Limitation. Ciurumelea et al. [11] evaluated their approach using

open-source apps that are hosted on F-Droid app market [15]. How-

ever, their findings may not be generalizable to all the proprietary

apps that are hosted on Google Play Store. Moreover, the number

of topics they considered (e.g., app usability and performance) shall
not precisely cover all the topics of user-reviews.

Palomba et al. [61]
Overview. Palomba et al. [61] proposed an approach, called Cha-

ngeAdvisor, following the approach proposed by Panichella et
al. [62], to classify user-reviews and map them to source code.

Palomba et al. [61] recommended the required source code changes

to address users’ feedback by measuring the asymmetric Dice sim-

ilarity coefficient [4] between the words in user-reviews and the

words in each class of source code. They evaluated their approach

using 44, 683 user-reviews of 10 open-source apps. They achieved

a precision of 81% and a recall of 70% in identifying source code

components that are impacted by the suggested changes.

Application. By using the ChangeAdvisor, developers would be

able to localize the required changes based on the received feedback

from users.

Limitation. ChangeAdvisor does not prioritize the suggested

changes. However, combining their approach with other prioritiza-

tion solutions, such as [56, 57, 70], would create a practical solution

for app developers and researchers.

Noei et al. [52]
Overview. Noei et al. [52] tracked the changes in the ranks of 900

apps in 30 most searched areas (e.g., dating,mailbox, andmessaging)
for two years. They reported that 61% of their understudied apps

lost their initial ranks over the period of their study, and only 6%

could improve their ranks. By studying the changes in ranks, Noei et
al. [52] analyzed various factors that are statistically significantly

related to the changes in ranks. They observed that constantly

addressing the issues that are reported in the user-reviews will

prevent an app from losing its rank.

Application. Noei et al. [52] provided a guideline for new app

developers in order to succeed in the competitive market of mobile

apps. Their guideline is based on their analyses and surveying 51

app developers. Moreover, they suggested developers of new apps,

that have received no or a limited number of user-reviews, to study

user-reviews, features, and descriptions of other similar apps in the

competition.

Limitation. Noei et al. [52] investigated the factors that are statis-

tically significantly related to the ranks. However, for a company

that is not concerned about the ranks, their findings may not be

interesting.

Hassan et al. [27]
Overview. As developers can directly respond to user-reviews,

Hassan et al. [27] studied such an interaction between develop-

ers and users. They investigated ∼ 4.47 million user-reviews and

126, 686 responses of 2, 328 top free apps. Hassan et al. [27] ob-
served that in almost one-third of the cases that developers respond

to user-reviews, the associated star-ratings have been increased

afterward.

Application. According to the findings of Hassan et al. [27], de-
velopers should provide users with a proper response explaining

the changes that they have made to address the reported issue.

Similarly, Noei et al. [52] suggested that the changes should also be
included in the release notes.

Limitation. Responding to all the received feedback is not a trivial
task for developers and may be expensive for developers. Google

Play Store should provide developers with a more productive re-

sponse mechanism.

Noei et al. [56]
Overview. As addressing the issues that are reported in user-

reviews can potentially lead to better star-ratings and ranks [52],

Noei et al. [56] proposed a solution to prioritize the user-related

issue reports. They integrated user-reviews into the process of is-

sue report prioritization by, first, clustering related user-reviews

together. Then, Noei et al. [56] identified the issue reports (from

GitHub) that are related to the clusters of user-reviews (fromGoogle

Play Store) with a precision of 79%. By having the user-reviews

matchedwith issue reports, they integrated users’ feedback (e.g., star-

ratings, sentiment scores, and the size of user-reviews) into issue

reports prioritization. Noei et al. [56] reported that prioritizing the

issue reports that are related to user-reviews shares a statistically

significant relationship with star-ratings.

Application. Different developers might follow different priori-

tization approaches when it comes to closing an issue report on

GitHub. Some developers address the issues that are reported by

senior developers first [12] while some developers address the is-

sues that are reported in more user-reviews on Google Play Store.

Noei et al. [56] proposed a systematic approach to have the user-

reviews matched with issue reports, so developers can prioritize

the issue reports using metrics from both Google Play Store and

A Survey of Utilizing User-Reviews Posted on Google Play Store CASCON ’19, November 2019, Toronto, Ontario, Canada

GitHub. Furthermore, developers should be able to avoid issue re-

ports duplication [9] prior to adding issues that are reported in

user-reviews to an issue tracking system.

Limitation. The proposed approach by Noei et al. [56] has been
evaluated using open-source Android apps that are hosted on

GitHub. However, their findings may not be generalizable to the

apps that are hosted on other code repositories or issue tracking

systems. Future research should evaluate their approach in other

ecosystems and source code repositories.

Noei et al. [57]
Overview. Noei et al. [57] studied ∼ 4 million user-reviews of

623 apps in ten different categories (e.g., business and social). They
identified the topics of user-reviews that are statistically signifi-

cantly related to star-ratings (key topics). Noei et al. [57] observed
that the key topics of user-reviews are not necessarily the most

frequent topics of user-reviews. They evaluated their approach us-

ing release notes of their subject apps, and reported, for 77% of the

apps on average, having a similar release note to the key topics

shares a statistically significant relationship with positive changes

in star-ratings.

Application. As Noei et al. [57] observed that the most frequent

issue reports or feature requests are not always associated with a

better or worse star-rating, developers should not be distracted by

the frequent topics. In fact, user-reviews that contain reports of an

issue related to the key topics should be addressed first. Moreover,

testing teams should pay special attention to the key topics that

are shared amongst the majority of app categories.

Limitation. Noei et al. [57] studied ten categories of mobile apps.

However, for the remaining categories, a similar study is required

to cover all the categories. Moreover, the key topics may change

over time and the same approach is required to recalculate the key

topics in the future.

4 IMPLICATIONS
In this section, the essential steps required to collect, prepare, and

analyze user-reviews are explained.

4.1 Data Collection
The data collection process is easier for app developers than ex-

ternal researchers (e.g., researchers and students). App developers

have access to users’ feedback via Google Play Store developers

console [20]. In addition, for each user-review, developers can view

the user’s device, language, and hardware specifications. By having

access to all this information, developers can study their users’

feedback more precisely and conveniently.

For researchers and students, user-reviews of non-owned apps

should be crawled from Google Play Store. However, due to the

Google limitations in accessing all the user-reviews of an app, re-

searchers should gradually crawl their required data from Google

Play store [16, 56]. Moreover, as recommended by Noei et al. [52],
even developers should also study user-reviews of other similar

apps in the competition in order to succeed. Therefore, develop-

ers should crawl and consider user-reviews of other apps in the

competition as well.

Having an incomplete set of users’ feedback can introduce bias

to the findings of a study as Martin et al. [41] reported that using an
incomplete set of data in Blackberry World App Store [7] biases the

final findings. A similar bias may also be introduced to the findings

of a study that is conducted using an incomplete set of data from

Google Play Store. Future research should shed more light into this.

4.2 Data Preprocessing
A user-review is an informal piece of text [19, 57, 60] that usually

suffers from grammatical issues and typos. A user-review such

as “it wsa workin fine till it crashddddd” contains several issues

and typos: “wsa”, “workin”, “crashddddd” should be replaced with

“was”, “working”, and “crashed”, respectively. Moreover, there are no

standards or consistent choices of words and terms to describe an

issue. For example, a user may use the term glitch to reports an issue
while another user with the same issue may use the term problem to

report it [56]. In addition, user-reviews contain negations that can

disrupt automatic text analysis approaches [57, 70]. For instance,

a user-review such as “There is no problem using this app!” may

be interpreted as a user-review that reports a problem because of

having the term “problem” in it. As a result, preprocessing user-

reviews is an essential part of studying user-reviews. In this section,

the most important steps that need to be taken are explained.

Identifying Inconsistent User-Reviews. User-reviews that are
posted on Google Play Store suffer from inconsistencies with the

associated star-ratings [16, 30, 57]. Imagine two users with exactly

the same perceived quality from the same app. These two users can

rate the app differently based on their personal interpretation of

star-ratings. Noei et al. [51] observed that some user-reviews with

negative content can be associated with high star-ratings, and vice

versa (see Figure 2). Consequently, the accuracy of a study can be

tainted by inconsistent user-reviews. Various solutions have been

proposed to identify inconsistent user-reviews [16, 52].

Fu et al. [16] built a regression model and tested it using 50, 000

user-reviews in order to identify the inconsistent user-reviews.

They checked the differences between the star-ratings and user-

reviews.

As another solution, Noei et al. [52, 57] compares the sentiment

scores [69] of user-reviews with the associated star-ratings to iden-

tify the inconsistent user-reviews. Different sentiment analysis

tools [36], such as SentiStrength [68], SentiStrentgh-SE [33],

and Natural Language Toolkit (NLTK) [6], can be used to cap-

ture the sentiment scores of user-reviews. However, there is not a

solid sentiment analysis tool trained using user-reviews on Google

Play Store. Noei et al. [52] employed SentiStrentgh-SE [33] which

is trained using software engineering artifacts. The generated senti-

ment scores are between −5 and +5: the most negative user-reviews

are scored as −5 and the most positive ones are scored as +5 [68].

The user-reviews are also associated with star-ratings between 1

and 5 [19]. As the majority of users do not download the apps with

star-ratings of less than three [54], Noei et al. [51] considers the
star-ratings of 3 as neutral ratings, star-ratings below 3 as negative

ones, and star-ratings above 3 as positive ones. Noei et al. [51]
defines a consistent user-review as the one that holds a positive

star-rating with a positive sentiment score, or a neutral star-rating

CASCON ’19, November 2019, Toronto, Ontario, Canada Ehsan Noei and Kelly Lyons

with a neutral sentiment score, or a negative star-rating with a

negative sentiment score [51].

Identifying Uninformative User-Reviews. An uninformative

user-review is a user-review that provide no applicable information

for app developers [10, 70]. For example, a user-review such as

“Very good” expresses praise by a user. On the other hand, a user-

review such as “disappointed with the full version. I love this app
and I have been using it for a long time, so I decided to get the full
version but some features disappeared, like the possibility to add more
photos to edit at the same time...” gives more information, regarding

an app functionality, to developers. Removing uninformative user-

reviews narrows down the number of user-reviews and reduces

noises while studying user-reviews. Many solutions have been

proposed to remove or utilize uninformative user-reviews.

Chen et al. [10] applies Expectation Maximization for Naïve

Bayes method [50] and builds a classifier to distinguish between

informative and uninformative user-reviews.

Noei et al. [56] groups similar user-reviews together and argues

that even user-reviews that are considered as uninformative user-

reviews by Chen et al. [10] can become informative when they are

studied as a group of user-reviews. Noei et al. [56] employs linguistic

rules to filter out the user-reviews that only express praises or

dissatisfactions towards an app.

Villarroel et al. [70] applies preprocessing steps on user-reviews,

such as n-grams extraction and negations management. Villarroel et
al. [70] clusters user-reviews in groups of feature requests and bug

reports. They reported that their solution outperforms the solution

proposed by Chen et al. [10].
Removing or keeping uninformative user-reviews depends on

the research goals. For example, when users’ satisfaction is desired,

uninformative user-reviews should be kept. Also, by grouping user-

reviews [56, 70], the elimination of uninformative user-reviews

should be restricted. On the other hand, when user-reviews are

explicitly used to identify feature requests or bug reports, uninfor-

mative user-reviews should be identified and removed.

Correcting Typos. Typos and misspelling in the user-reviews can

disrupt text analysis techniques, such as topic modeling [58]. To

mitigate the risk of missing valuable information and reducing the

potential noises, typos should be corrected and replaced with the

right words and terms. For example, Noei et al. [51] uses Jazzy Spell
Checker [34] with a dictionary of 645, 289 English words to correct

the typos in user-reviews.

Coreference Resolution. Coreference occurs when two or more

expressions refer to the same referent [13, 57]. A user-review such

as “Great app, a little slow. wish they had transitions between shots!
or maybe I’m just not seeing it. good app nonetheless” contains coref-
erences. The second part of the user-reviews uses a pronoun (i.e., it)

that refers to “transitions between shots”. Unfortunately, system-

atic techniques may not understand such references. A tool such as

Stanford deterministic coreference resolution [39] should be useful

to resolve the coreferences in the user-reviews. After coreference

resolution, the above example user-reviews should be converted

to “Great app, a little slow. wish they had transitions between shots!
or maybe I’m just not seeing transitions between shots. good app
nonetheless”.

Labeling and Annotation. As reported by McIlroy et al. [43],
users may report several concerns and demands, such as bug reports

and feature requests, in one single user-review. For example, a user-

review such as “You can only edit photos but whenever I wanted to
edit videos I clicked on it and the app stopped working. I’ve tried it
multiple times and it still doesn’t work” should be broken into two

smaller pieces: (i) “You can only edit photos” and (ii) “whenever I
wanted to edit videos I clicked on it and the app stopped working. I’ve
tried it multiple times and it still doesn’t work”. Different solutions
have been proposed to resolve such an issue [43, 57].

McIlroy et al. [43] suggests an approach to automatically assign

multiple labels to user-reviews with a precision of 66% and a recall

of 65%. Noei et a. [57] employs Stanford CoreNLP [40] to break

the user-reviews with several concerns into smaller pieces. There-

fore, each smaller piece shares an independent concern. Stanford

CoreNLP (i) annotates the words in the user-reviews, (ii) produces

the base forms and the parts of speech, and (iii) identifies the struc-

ture of sentences.

Resolving Synonyms. Synonyms should be resolved as resolv-

ing synonyms increases the precision of statistical analyses and

modeling techniques [53, 56, 70]. Unfortunately, there is no the-

saurus or dictionary of words related to users’ feedback and the

slangs and vocabularies that users use to express their feedback.

General-purpose thesaurus, such as WordNet [45], are not suffi-

cient enough to resolve the synonyms of user-reviews [56, 70].

Earlier studies [52, 70] have built their own dictionary of words

by manually investigating a sample of user-reviews. For example,

Bavota et al. [5] manually analyzed 1, 000 user-reviews to build

their own dictionary of words. Noei et al. [52] manually studied

5, 000 user-reviews to build such a dictionary. Yet having a unified

dictionary is an open problem in this area as it impacts the accuracy

of research findings.

In addition to synonyms, the abbreviation and informal messag-

ing vocabularies should also be handled or replaced with proper

formal terms. For example, “w8” should be replaced with “wait”.

Resolving Negations. The negations in user-reviews disrupt text

analysis and topic modeling techniques [52, 56, 70]. One way to

handle negations, as also employed by Noei et al. [56], is using
the Stanford natural language processing toolkit [40] that helps

developers and researchers in finding and resolving the negated

verbs and terms [52].

Clustering. As discussed earlier in this section, clustering user-

reviews into groups of similar user-reviews can turn uninforma-

tive user-reviews into informative groups of user-reviews. Noei et
al. [56] reported a significant 45% increase in the precision of map-

ping user-reviews (from Google Play Store) to issue report (from

GitHub) after grouping similar user-reviews together.

4.3 Analysis
Studying and analyzing user-reviews heavily depends on the goals

of a company or researcher. Some earlier studies investigate the

factors that are statistically significantly related to star-ratings, the

number of downloads, or ranks [42], while some other studies at-

tempt to summarize user-reviews and put them to use [42]. Once

the user-reviews got cleaned up (see Section 4.2), if knowledge

A Survey of Utilizing User-Reviews Posted on Google Play Store CASCON ’19, November 2019, Toronto, Ontario, Canada

extraction is desired, the required metrics should be measured from

data, such as users’ sentiment scores and bug reports. Developers

and researchers shall also feed the preprocessed data into predic-

tion models and deep learning techniques if software development

automation and enhancement is desired.

When studying a large number of apps and user-reviews, topic

modeling is widely used in the literature [8, 28]. For example, Ia-

cob and Harrison [31] and Guzman and Maalej [25] applied La-

tent Dirichlet Allocation (LDA) on user-reviews to identify feature

requests. Fu et al. [16] applied topic modeling on ∼ 13 million

user-reviews and ranked user complaints in each category of apps.

Linguistic rules have also been used in the literature to extract

knowledge from user-reviews [31, 32, 56]. For example, when look-

ing for a feature request, a rule such as “please add [X]” could be

useful. Researchers and developers are advised to follow the impli-

cations discussed in this section. Thus, they would be able to utilize

user-reviews more accurately and efficiently.

5 CONCLUSION
Utilizing user-reviews is an important part of the app development

process as it impacts the star-ratings and rank of an app. In this

paper, we survey the earlier work on utilizing user-reviews. We

discuss and explain the related papers and solutions in chronologi-

cal order, and, for each paper, we provide an overview in addition

to applications of findings and limitations. Moreover, we provide

a guideline for future research, including the essential steps of

data collection and data preprocessing. Researchers and developers

should: (i) identify inconsistent user-reviews, (ii) identify uninfor-

mative user-reviews, (iii) correct typos, (iv) resolve coreferences,

(v) annotate user-reviews , (vi) resolve synonyms, (vii) resolve nega-

tions, and (viii) group similar user-reviews together, in order to

achieve better and more accurate results.

Unfortunately, the current rating mechanism in Google Play

Store is not fair to app developers. Once an app receives a notable

number of negative star-ratings, it would be impossible for its

developers to fix the overall star-rating. This is a major problem as

users usually do not download the app with an overall star-rating

of less than three. Therefore, developers should always pay extra

attention to users’ feedback. Noei et al. [52] studied 900 apps and

reported that 61% of the understudy apps lost their initial ranks

over a period of two years. Ruiz et al. [64] suggests removing such

an app from the store and re-uploading it as a new app, which is

not an ideal solution. This issue will remain until Google improves

the star-rating mechanism or incorporates recent studies into the

Google Play Store rating solution.

In the future, we expect more research on user-reviews. Besides

all the attempts to extract bug reports and feature request from

user-reviews, a solid approach is required to generate clear, concise,

and complete reports from user-reviews. However, due to the unin-

structed and informal format of user-reviews, this is not an easy

challenge. Google Play Store should ease this process by enhancing

its feedback mechanism and making it more structured. Therefore,

developers would be able to extract bug reports and user experi-

ence from user-reviews more efficiently. The existing work provides

developers with knowledge and insight into app development pro-

cess and eases the development process using state-of-the-art data

mining and machine learning techniques. We expect to hear more

about an automated mobile app engineering solution integrating

user-reviews into an adaptable mobile app development paradigm.

REFERENCES
[1] BramAdams and ShaneMcIntosh. 2016. Modern release engineering in a nutshell–

why researchers should care. In Proceedings of 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Vol. 5. 78–90.

[2] Afnan A Al-Subaihin, Federica Sarro, Sue Black, Licia Capra, Mark Harman,

Yue Jia, and Yuanyuan Zhang. 2016. Clustering mobile apps based on mined

textual features. In Proceedings of the 10th ACM/IEEE international symposium on
empirical software engineering and measurement. ACM, 38.

[3] Apple. 2019. App Store. [Online] Available: https://www.apple.com/ca/ios/app-

store/.

[4] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999. Modern information
retrieval. Vol. 463. ACM press New York.

[5] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Mas-

similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2015. The Impact of

API Change-and Fault-Proneness on the User Ratings of Android Apps. IEEE
Transactions on Software Engineering 41, 4 (2015), 384–407.

[6] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing
with Python: analyzing text with the natural language toolkit. " O’Reilly Media,

Inc.".

[7] Blackberry. 2019. Blackberry World app store. [Online]. Available:

https://appworld.blackberry.com/.

[8] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.

The Journal of Machine Learning Research 3 (2003), 993–1022.

[9] Yguaratã Cerqueira Cavalcanti, Paulo Anselmo da Mota Silveira Neto, Daniel

Lucrédio, Tassio Vale, Eduardo Santana de Almeida, and Silvio Romero de

Lemos Meira. 2013. The bug report duplication problem: an exploratory study.

Software Quality Journal 21, 1 (2013), 39–66.
[10] Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao, and Boshen Zhang. 2014. AR-

miner: mining informative reviews for developers from mobile app marketplace.

In Proceedings of the 36th International Conference on Software Engineering. ACM,

767–778.

[11] Adelina Ciurumelea, Andreas Schaufelbhl, Sebastiano Panichella, and Harald

Gall. 2017. Analyzing Reviews and Code of Mobile Apps for Better Release

Planning. In Proceedings of the 24th International Conference on Software Analysis
Evolution and Reengineering. IEEE.

[12] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. 2017. A systematic

mapping study of software development with GitHub. IEEE Access 5 (2017), 7173–
7192.

[13] David Crystal. 2011. Dictionary of linguistics and phonetics. Vol. 30. John Wiley

& Sons.

[14] Andrea Di Sorbo, Sebastiano Panichella, Carol V Alexandru, Junji Shimagaki,

Corrado A Visaggio, Gerardo Canfora, and Harald C Gall. 2016. What would

users change in my app? summarizing app reviews for recommending software

changes. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 499–510.

[15] FDroid. 2019. F-Droid. [Online]. Available: http://www.f-droid.org/.

[16] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong, and Norman Sadeh.

2013. Why people hate your app: Making sense of user feedback in a mobile app

store. In Proceedings of the 19th International Conference on Knowledge Discovery
and Data Mining. ACM, 1276–1284.

[17] Laura V Galvis Carreño and Kristina Winbladh. 2013. Analysis of user comments:

an approach for software requirements evolution. In Proceedings of the 35th
International Conference on Software Engineering. IEEE, 582–591.

[18] Github. 2019. GitHub. [Online]. Available: http://www.github.com/.

[19] Google. 2019. Google play store. [Online]. Available: http://play.google.com/.

[20] Google. 2019. Google play store development console. [Online]. Available:

https://play.google.com/apps/publish.

[21] Michael Goul, Olivera Marjanovic, Susan Baxley, and Karen Vizecky. 2012. Man-

aging the enterprise business intelligence app store: Sentiment analysis supported

requirements engineering. In 45th Hawaii International Conference on System
Sciences. IEEE, 4168–4177.

[22] Xiaodong Gu and Sunghun Kim. 2015. "What Parts of Your Apps are Loved by

Users?"(T). In 30th IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 760–770.

[23] Emitza Guzman, Omar Aly, and Bernd Bruegge. 2015. Retrieving diverse opin-

ions from app reviews. In 2015 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 1–10.

[24] Emitza Guzman, Muhammad El-Haliby, and Bernd Bruegge. 2015. Ensemble

Methods for App Review Classification: An Approach for Software Evolution

(N). In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 771–776.

CASCON ’19, November 2019, Toronto, Ontario, Canada Ehsan Noei and Kelly Lyons

[25] Emitza Guzman and Wiem Maalej. 2014. How do users like this feature? a fine

grained sentiment analysis of app reviews. In Proceedings of the 22nd International
Conference on Requirements Engineering. IEEE, 153–162.

[26] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2012. App Store Mining and

Analysis: MSR for App Stores. In Proceedings of the 9th International Conference
on Mining Software Repositories (MSR ’12). IEEE, Piscataway, NJ, USA, 108–111.

[27] Safwat Hassan, Chakkrit Tantithamthavorn, Cor-Paul Bezemer, and Ahmed E

Hassan. 2018. Studying the dialogue between users and developers of free apps

in the google play store. Empirical Software Engineering 23, 3 (2018), 1275–1312.

[28] Matthew Hoffman, Francis R Bach, and David M Blei. 2010. Online learning for

latent dirichlet allocation. In advances in neural information processing systems.
856–864.

[29] Hanyang Hu, Cor-Paul Bezemer, and Ahmed E Hassan. 2018. Studying the

consistency of star ratings and the complaints in 1 & 2-star user reviews for top

free cross-platform Android and iOS apps. Empirical Software Engineering 23, 6

(2018), 3442–3475.

[30] Hanyang Hu, Shaowei Wang, Cor-Paul Bezemer, and Ahmed E Hassan. 2019.

Studying the consistency of star ratings and reviews of popular free hybrid

Android and iOS apps. Empirical Software Engineering 24, 1 (2019), 7–32.

[31] Claudia Iacob and Rachel Harrison. 2013. Retrieving and Analyzing Mobile

Apps Feature Requests from Online Reviews. In Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR ’13). IEEE, 41–44.

[32] Claudia Iacob, Varsha Veerappa, and Rachel Harrison. 2013. What are you com-

plaining about?: a study of online reviews of mobile applications. In Proceedings
of the 27th International BCS Human Computer Interaction Conference. British
Computer Society, 29.

[33] Md Rakibul Islam and Minhaz F Zibran. 2017. Leveraging automated senti-

ment analysis in software engineering. In Proceedings of the 14th International
Conference on Mining Software Repositories. IEEE Press, 203–214.

[34] Jazzy. 2017. Jazzy Spell Checker. [Online]. Available:

http://jazzy.sourceforge.net/.

[35] Yohan Jo and Alice H Oh. 2011. Aspect and sentiment unification model for

online review analysis. In Proceedings of the fourth ACM international conference
on Web search and data mining. ACM, 815–824.

[36] Robbert Jongeling, Subhajit Datta, and Alexander Serebrenik. 2015. Choosing

your weapons: On sentiment analysis tools for software engineering research. In

Proceedings of the 31st Conference on Software maintenance and evolution. IEEE,
531–535.

[37] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Hassan.

2014. What do mobile app users complain about? IEEE Software 32, 3 (2014),
70–77.

[38] Hee-Woong Kim, HL Lee, and JE Son. 2011. An exploratory study on the deter-

minants of smartphone app purchase. In Proceedings of the 11th International DSI
and the 16th APDSI Joint Meeting.

[39] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Sur-

deanu, and Dan Jurafsky. 2011. Stanford’s multi-pass sieve coreference resolution

system at the CoNLL-2011 shared task. In Proceedings of the 50th Internrational
Conference on Computational Natural Language Learning: Shared Task. 28–34.

[40] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J

Bethard, and David McClosky. 2014. The Stanford CoreNLP natural language

processing toolkit. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations. 55–60.

[41] William Martin, Mark Harman, Yue Jia, Federica Sarro, and Yuanyuan Zhang.

2015. The app sampling problem for app store mining. In Proceedings of the 12th
Working Conference on Mining Software Repositories. IEEE, 123–133.

[42] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.

2016. A survey of app store analysis for software engineering. IEEE Transactions
on Software Engineering PP, 99 (2016).

[43] Stuart McIlroy, Nasir Ali, Hammad Khalid, and Ahmed E Hassan. 2016. Analyzing

and automatically labelling the types of user issues that are raised in mobile app

reviews. Empirical Software Engineering 21, 3 (2016), 1067–1106.

[44] Stuart McIlroy, Weiyi Shang, Nasir Ali, and Ahmed E Hassan. 2015. Is it worth

responding to reviews? studying the top free apps in google play. IEEE Software
34, 3 (2015), 64–71.

[45] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[46] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and Denys Poshy-

vanyk. 2015. Auto-completing bug reports for Android applications. In Pro-
ceedings of the 10th Joint Meeting on Foundations of Software Engineering. ACM,

673–686.

[47] Maleknaz Nayebi, Bram Adams, and Guenther Ruhe. 2016. Release Practices

for Mobile Apps–What do Users and Developers Think?. In Proceedings of the
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. IEEE, 552–562.

[48] Maleknaz Nayebi, Henry Cho, and Guenther Ruhe. 2018. App store mining is

not enough for app improvement. Empirical Software Engineering 23, 5 (2018),

2764–2794.

[49] Maleknaz Nayebi, Homayoon Farahi, and Guenther Ruhe. 2017. Which version

should be released to app store?. In Proceedings of the 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE,
324–333.

[50] Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and Tom Mitchell.

2000. Text classification from labeled and unlabeled documents using EM. Ma-
chine learning 39, 2 (2000), 103–134.

[51] Ehsan Noei. 2018. Succeeding in Mobile Application Markets (From Development
Point of View). Ph.D. Dissertation.

[52] Ehsan Noei, Daniel Alencar Da Costa, and Ying Zou. 2018. Winning the app

production rally. In Proceedings of the 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 283–294.

[53] Ehsan Noei and Abbas Heydarnoori. 2016. EXAF: A search engine for sample

applications of object-oriented framework-provided concepts. Information and
Software Technology 75 (2016), 135–147.

[54] Ehsan Noei, Mark D Syer, Ying Zou, Ahmed E Hassan, and Iman Keivanloo. 2018.

A study of the relation of mobile device attributes with the user-perceived quality

of android apps. Empirical Software Engineering 22, 6 (2018), 3088–3116.

[55] Ehsan Noei, Mark D Syer, Ying Zou, Ahmed E Hassan, and Iman Keivanloo. 2018.

A study of the relation of mobile device attributes with the user-perceived quality

of Android apps. In Proceedings of the 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 469–469.

[56] Ehsan Noei, Feng Zhang, Shaohua Wang, and Ying Zou. 2019. Towards pri-

oritizing user-related issue reports of mobile applications. Empirical Software
Engineering 24, 4 (2019), 1964–1996.

[57] Ehsan Noei, Feng Zhang, and Ying Zou. 2019. Too Many User-Reviews! What

Should App Developers Look at First? IEEE Transactions on Software Engineering
(2019).

[58] Christiane Nord. 2005. Text analysis in translation: Theory, methodology, and
didactic application of a model for translation-oriented text analysis. Number 94.

Rodopi.

[59] Dennis Pagano and Walid Maalej. 2013. User feedback in the appstore: An

empirical study. In Proceedings of the 21st International Conference on Requirements
Engineering. IEEE, 125–134.

[60] Fabio Palomba, Mario Linares-Vásquez, Gabriele Bavota, Rocco Oliveto, Massim-

iliano Di Penta, Denys Poshyvanyk, and Andrea De Lucia. 2015. User Reviews

Matter! Tracking Crowdsourced Reviews to Support Evolution of Successful

Apps. In Proceedings of the 31st International Conference on Software Maintenance
and Evolution. IEEE, 291–300.

[61] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Har-

ald Gall, Filomena Ferrucci, and Andrea De Lucia. 2017. Recommending and

localizing change requests for mobile apps based on user reviews. In Proceedings
of the 39th International Conference on Software Engineering. 106–117.

[62] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, C Visaggio, Gerardo

Canfora, and H Gall. 2015. How can i improve my app? classifying user reviews

for software maintenance and evolution. In Proceedings of the 31st International
Conference on Software Maintenance and Evolution.

[63] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio,

Gerardo Canfora, and Harald C Gall. 2016. ARdoc: app reviews development

oriented classifier. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 1023–1027.

[64] Israel J Mojica Ruiz, Meiyappan Nagappan, BramAdams, Thorsten Berger, Steffen

Dienst, and Ahmed E Hassan. 2015. Examining the rating system used in mobile-

app stores. IEEE Software 33, 6 (2015), 86–92.
[65] Israel J Mojica Ruiz, Meiyappan Nagappan, BramAdams, Thorsten Berger, Steffen

Dienst, and Ahmed E Hassan. 2016. Examining the Rating System Used in Mobile-

App Stores. IEEE Software 33, 6 (2016), 86–92.
[66] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013.

Improving bug localization using structured information retrieval. In Proceedings
of the 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 345–355.

[67] Statista. 2019. Number of available applications in the Google Play

Store from December 2009 to March 2019. [Online]. Available:

https://www.statista.com/statistics/266210/number-of-available-applications-

in-the-google-play-store/.

[68] Mike Thelwall, Kevan Buckley, and Georgios Paltoglou. 2012. Sentiment strength

detection for the social web. Journal of the American Society for Information
Science and Technology 63, 1 (2012), 163–173.

[69] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas.

2010. Sentiment strength detection in short informal text. Journal of the American
Society for Information Science and Technology 61, 12 (2010), 2544–2558.

[70] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massimil-

iano Di Penta. 2016. Release planning of mobile apps based on user reviews. In

38th International Conference on Software Engineering. ACM, 14–24.

	Abstract
	1 Introduction
	2 Background
	2.1 Users' Feedback
	2.2 Continuous App Development

	3 Surveyed Publications
	4 Implications
	4.1 Data Collection
	4.2 Data Preprocessing
	4.3 Analysis

	5 Conclusion
	References

