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Abstract The frequency at which new research documents are being pub-
lished causes challenges for researchers who increasingly need access to rele-
vant documents in order to conduct their research. Searching across a variety
of databases and browsing millions of documents to find semantically relevant
material is a time-consuming task. Recently, there has been a focus on recom-
mendation algorithms that suggest relevant documents based on the current
interests of the researchers. In this paper, we describe the implementation of
seven commonly used algorithms and three aggregation algorithms. We eval-
uate the recommendation algorithms in a large-scale biomedical knowledge
base with the goal of identifying relative weaknesses and strengths of each
algorithm. We analyze the recommendations from each algorithm based on
assessments of output as evaluated by 14 biomedical researchers. The results
of our research provide unique insights into the performance of recommenda-
tion algorithms against the needs of modern-day biomedical researchers.
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1 Introduction

A frequent challenge for science researchers is to keep up to date with relevant
research. This task is especially challenging because of the many disparate
sources of literature, a growing number of publications being produced, and
the relative lack of powerful tools to support context-specific methods for ex-
ploration [32]. Specifically, in biomedical research areas, which account for 30%
of journals, the number of publications has doubled in the past 20 years []1].

One way to improve the research discovery process is by providing re-
searchers with recommendations for relevant documents or related bodies of
work. In this paper, we analyze and compare seven recommendation algo-
rithms and three aggregation algorithms that were implemented in a large-
scale biomedical-focused discovery and distribution platform called Meta [75].
Meta’s underlying semantic network contains over 90 biomedical controlled vo-
cabularies and ontologies, five core entities (papers, researchers, institutions,
journals, and concepts), and relations among the entities (e.g., researchers
write documents, documents mention concepts, and journals publish docu-
ments). At the time of this research, Meta indexed over 27 million documents
with 1.7 million full-text documents. Designing a recommendation system for
such a large-scale platform is challenging and the choice of which algorithm(s)
to deploy must take into account: runtime performance (how fast the algo-
rithms execute on a large-scale knowledge base); coverage (the percentage of
documents in the knowledge base for which recommendations can be gener-
ated); and, quality of recommendations (the usefulness and relevance of the
recommended documents to researchers).

We investigate the quality of recommended documents and the perfor-
mance of recommendation algorithms through a set of experiments. Specifi-
cally, we use a qualitative experiment to assess and compare the recommen-
dations returned by ten different algorithms (seven base algorithms and three
rank aggregation algorithms) using metrics of coverage, diversity, serendipity,
novelty, usefulness, and accuracy [14] 52 57, 6I]. The results of our qualita-
tive experiments provide unique insights into the strengths and weaknesses of
different kinds of recommendation algorithms in biomedical research. Our ex-
periments compare recommendations based on meta-data, full-text, semantic
relationships, citation networks, co-authorship, and combinations of these fea-
tures. To the best of our knowledge, our experiments are the first to compare
such a diverse set of recommendation algorithms in a working system that is
in production.

The remainder of this paper is organized as follows. In Section[2] we survey
relevant work on scientific databases and recommender systems. The imple-
mentation of the approach is explained in Section [3] The recommendation
algorithms are described in Section [d] The evaluation method and findings are
presented in Section [bl Finally, we conclude and provide future directions in
Section
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2 Related Work

In this section, we introduce existing knowledge bases first. Then, we present
related research in this area.

2.1 Knowledge Bases

Scientific databases have emerged as one of the milestones in the modern scien-
tific enterprise. One of the main goals of these resources is to refine the methods
of information retrieval and augment citation analysis [9, 28, 33]. Major on-
line scientific databases that are currently in use by biomedical researchers
are PubMed [22], Google Scholar (GS) [37], Web of Science (WoS) [24], Sco-
pus [31], Semantic Scholar (S2) [91], and Meta [72]. Most of these online scien-
tific databases make use of recommendation systems and algorithms to some
degree and identify relevant documents based on certain criteria or data.

PubMed [82] is a free online resource that contains references from the
MEDLINE database [38] as well as other life science journals and books [22].
It mostly focuses on medicine and biomedical literature (as Meta), whereas
the other resources described below include journals from various scientific
fields [33]. Related documents are identified by the number of terms in com-
mon. Approximately 2 million terms are used and weighted based on the num-
ber of different documents in the database that contain the term, the number
of times the term occurs in the first and second documents and the location
of the term.

GS [37] is another free service that crawls the web and finds scholarly doc-
uments and documents. Documents are indexed by their meta-tags or through
automatic format inspection. Compared to PubMed, GS provides very limited
search fields (title, author, publication year, all text, and publisher); however,
GS supports full-text search, which distinguishes it from PubMed and WoS.
For authors with a GS profile, GS uses full-text analysis and algorithms to rec-
ommend documents related to one’s own publications, and, recently, authors
can follow research related to that of another author [IJ.

WoS [23] is developed and maintained by Clarivate Analytics (formerly
the Institute of Scientific Information of Thomson Reuters), and, in compar-
ison to other resources, covers the oldest publications with archived records
dating back to 1900 [23] [33]. The WoS indexing procedure is manual and edi-
tors update the journal coverage by identifying and evaluating promising new
journals or deleting journals that have become less useful [99]. WoS finds rel-
evant documents using keywords [45] in the search query and citation-based
methods. Recently, WoS and GS started a collaborative effort to interlink their
data sources, allowing researchers to search in GS and move to WoS for deeper
citation analyses, such as in-depth citation history research [24] 58] 97].

Scopus [31] was launched at nearly the same time as GS, and it is devel-
oped and maintained by Elsevier. Scopus is the largest abstract and citation
database of peer-reviewed literature. Similar to WoS, the indexing procedure
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is manual and the journals are evaluated based on a number of criteria [31].
In comparison to other generic resources, such as WoS and GS, Scopus of-
fers a wider range of search fields called proximities. Related documents are
suggested based on shared references, authors, or keywords.

S2 [91] was launched in late 2015 and is developed and maintained at the
Allen Institute for Artificial Intelligence [4]. It is a free Al-based scholarly
search engine. S2 uses natural language processing, data mining, and machine
learning techniques to discern the content of research documents. S2 covers
over 40 million research documents [51].

Meta makes newly published findings available to researchers by allow-
ing users to subscribe to any context or entity in the semantic network [75].
Meta’s goal is to make it quicker and easier for researchers to filter through sci-
entific documents, find the most important work, and most relevant research
tools and products. Because of the variety of available data, that is in Meta’s
knowledge base, several recommendation algorithms have been implemented
and deployed in Meta that recommend documents based on criteria such as
citation networks, text content, semantic tag content, and co-authorship in-
formation.

In addition to the large-scale databases described above, there are several
other systems that focus on some aspects of search and discovery of scientific
documents such as recommendation, citation management, and citation anal-
ysis. When compared to the major databases described above, these tools have
less extensive coverage of the scientific literature but do offer some models of
recommendation systems.

CiteSeer [16], which covers computer and information systems literature,
was the first to provide automated citation indexing and citation linking [62].
It also uses meta-data in combination with word-based measures for the doc-
ument recommendation.

Mendeley [46] is a reference manager that can also recommend docu-
ments based on user profiles or based on a given document using a content-
based approach, more specifically, Term Frequency-Inverse Document Fre-
quency (TF-IDF) similarity [80] implemented on top of the Lucene open-source
libraries [79]. Mendeley uses meta-data such as user-defined tags, abstracts,
mesh-terms, and title, as its fields [48]. For personalized recommendations, it
uses item-based collaborative filtering (IBCF) with Apache Mahout [47], [48].
Collaborative filtering is based on the notion that people who agree in their
subjective evaluation of past documents (i.e., like-minded users) are likely to
agree again in their future evaluation of knowledge bases [85]. Once two like-
minded users are determined, items one user likes are recommended to the
other user, and vice versa.

Docear [12] is an experimental tool specifically designed for managing and
annotating PDFs and recommending documents publicly available on the web.
Two types of recommendation algorithms are implemented, namely stereotype
recommendations and content-based filtering, both of which are highly depen-
dent on what users have added to their profiles.
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TheAdvisor [60] uses a variant of the PageRank algorithm [43] on the ci-
tation graph. One interesting feature of the TheAdvisor is that users are able
to personalize the recommendations by changing variables of the algorithm to
find relevant documents whose relations to the query are not obvious, older
documents, or more recent documents. The effectiveness of some of these tech-
niques is limited in that recommendations are either based solely on the sim-
ilarity between user preferences or on network statistics derived from a user’s
citation list [44].

We implemented seven base algorithms and three aggregation algorithms
that aggregate results from the seven base algorithms in Meta. The algorithms
are all inspired by existing work [5, [0, [29] 35, 54, 55| 69, [94] and are customized
for the Meta dataset of biomedical documents. Retrieval of biomedical liter-
ature always had its unique methods due to the rich knowledge bases, such
as the Unified Medical Language System (UMLS), Medical Subject Headings
(MeSH), and the Systematized Nomenclature of Medicine (SNOMED) that
enable the indexing of documents into concepts, for various purposes, such as
retrieval [76]. The algorithms, summarized in Table [} are described in detail
in Section 4

2.2 Related Literature

Methods and solutions for evaluating recommender systems have been exten-
sively discussed in the earlier literature [2] [4T] [49] 02]. Recommender systems
can be evaluated using various techniques such as online or offline methods.
We discuss related work along with two topics of (i) evaluation of recommender
systems and (ii) evaluation metrics.

2.2.1 Evaluation of Recommender Systems

Online Fvaluation and User Study. In user studies, evaluators are asked to
interact with a recommender system and perform some evaluation tasks. Simi-
larly, online evaluations also benefit from actual users but in a natural course [2].
User participation is essential in both types of evaluation. Box et al. [I7] pro-
vides a general study of online evaluation design. Krishnan et al. [59] presents a
comparison of online recommender systems concerning human decisions. User
studies are popular for evaluation of recommender systems [2]. For example,
Lee et al. [64], Ma et al. [67], and Middleto et al. [73] proposed recommender
systems for specific applications, such as personalized user searches, and eval-
uated their solutions using user studies. Raamkumar et al. [83] proposed a so-
lution (integrated discovery of similar documents) in order to helps users find
similar documents. They evaluated their solution using ACM Digital Library
by asking 121 researchers to answer different evaluation questions. Mogenet
et al. [T4] reported that although online evaluation is the most reliable way
to evaluate the results of their experiments, it is not as fast as offline evalua-
tion. They compared metrics such as precision and recall when recommending
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jobs and found that only a few metrics from the online evaluation are highly
correlated with their offline evaluation counterparts.

Offtine FEvaluation. Offline evaluation benefits from historical data to eval-
uate a recommender system. Offline evaluation is among popular techniques
because frameworks and evaluation measures can be developed for evaluations.
However, offline evaluation is limited in understanding the impact of metrics
such as serendipity and diversity on user experience [52, [86]. Offline evalua-
tion lacks the ability to measure the actual propensity of users interacting with
the recommender system in the future. As an example, data may change over
time and the current predictions might not reflect correct recommendations in
the future [2]. Moreover, evaluation measures such as accuracy do not capture
metrics such as serendipity and novelty [2]. Canamares et al. [21] examines the
steps that need to be taken in the offline evaluation of recommender systems,
such as user studies and evaluation metrics. Gruson et al. [39] compared offline
evaluation results with online evaluation as the gold standard. They reported
problems from both bias and variance in offline estimators can be mitigated
by identifying proper experiments to A/B test. Beel et al. [10] compared of-
fline evaluation results to online evaluation in the context of research-paper
recommender systems. They reported that offline evaluations do not always
reflect the same result as online evaluations. However, they reported a strong
correlation between online evaluation results and user studies.

In this paper, we evaluate recommendation algorithms in the context of
biomedical knowledge bases with the help of 14 expert evaluators. We show
that algorithms such as B-CCP (see Section {]) perform better than other
algorithms in biomedical knowledge bases.

2.2.2 FEvaluation Metrics

McNee et al. [T1] argue that measuring accuracy is not enough for evaluation
of recommender systems. Konstan et al. [56] discuss the importance of novelty
in recommender systems. Ge et al. [34] study the coverage metrics and Smyth
and McClave [95] discuss diversity metrics. Kaminskas and Bridge [62] focus
on beyond-accuracy metrics for evaluating recommender systems, including
serendipity, novelty, and coverage. They observe correlations between metrics
such as diversity and novelty when conducting an offline evaluation. Schein
et al. [89] discuss the metrics that should be used for evaluating cold-start
recommender systems, i.e., for the items that no one has yet evaluated nor
ranked them.

In this work, we incorporate all the important metrics for the evaluation of
recommender systems. We evaluate six metrics of accuracy, coverage, diversity,
novelty, serendipity, usefulness in the context of biomedical knowledge bases.
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Fig. 1: System schema: data flow of the recommendation engine.

3 The Recommender System in a Nutshell

Figure (1| gives an overview of the recommender system that we evaluated.
The algorithms that are discussed in this paper were integrated into Meta’s
document-to-document recommendation system [75] and make use of its large-
scale semantic knowledge base. As shown in Figure[l] the document-to-document
recommendation system has three main components:

(i) Data Source. Public and private data sources that feed the knowledge net-
work, including PubMed [82], Crossref [26], and full-text documents.

(ii) Data Processing. An Extract, Transform, Load (ETL) pipeline that disam-
biguates the entities and discovers relations among them.

(i) Recommendation Engine. The recommendation engine includes the seven
base recommendation algorithms are described in Section [d] and the ag-
gregation algorithms that combine recommendations from the base recom-
menders to generate the final set of recommendations.

3.1 Data Source

Three main data sources are used to populate the knowledge base: PubMed [22],
Crossref [26], and full-text documents.
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PubMed. PubMed is the central repository for all biomedical publications.
PubMed provides a detailed API through which biomedical journals and
conferences can be retrieved [22]. A PubMed record contains a title, ab-
stract, and meta-data (e.g., authors, affiliations, keywords, DOI, and ISSN).
Each PubMed document has a unique id (PMID) corresponding to a unique
digital object identifier (DOI) registered by Crossref [20].

Crossref. Crossref is a non-profit association of scholarly publishers that de-
velop the infrastructure to distribute and maintain DOIs [26]. From Cross-
ref, we gathered meta-data for 50.9 million documents and citations.

Full-Text Documents. Our third data source is full-text documents from pub-
lisher partners of Meta which, at the time of our experiment, included
Elsevier, Sage, DeGruyter, PLoS, BMC, among others. The Meta full-text
pipeline contains various adapters for diverse publishers and extracts both
meta-data and citation information from full-text content, which arrives in
both XML [I8] and PDF formats.

3.2 Data Processing

Each document goes through a disambiguation engine which has two main
tasks. The first is disambiguating the authors of the document where the goal
is to associate the document with the existing authors in the database or assign
a newly discovered author. Meta’s author disambiguation algorithm is modeled
after the winning algorithms of the KDD Cup 2013, Author Disambiguation
challenge (track-2) [65] 66]. Given a manually disambiguated document-author
assignment training set, a random forest classifier [42] is trained to discrim-
inate between correct and incorrect author-document assignments. Given an
existing document-to-author assignment database and a newly published doc-
ument, the algorithm compares the document against each candidate author’s
profile which included over 43 predictive features at the time of our experiment,
using the classification model. If the author with maximum match probabil-
ity achieves a threshold, the document is assigned to this candidate author,
otherwise, a new author profile is generated and the document is assigned as
the first document of the newly discovered author. The 43 predictive features
span five major categories: author name similarity metrics (e.g. Levenstein,
Jaro-Winkler, and Jaccard [36]), document content similarity (mostly based
on TF-IDF [84]), affiliation similarity, co-authorship information, and author’s
active time compatibility. Meta’s author disambiguation algorithm achieves an
F1 score of 0.73, AU-ROC of 0.94, and AU-PRC of 0.60.

The second disambiguation process deals with concept mentions. Once a
concept mention is recognized through an entity recognizer, such as GNAT [40],
DNORM [63], and NelJI [20], it is normalized into the canonical name from
UMLS [15] and becomes a semantic tag. Among the many concept types, we
used only the Medical Subject Headings (MeSH) in our algorithms.

Next, documents go through a citation extraction phase, during which ref-
erences listed by the documents are identified and resolved into unambiguous,
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Table 1: Summary of recommendation and rank aggregation algorithms that
are utilized in our system.

Name Short Description

B-CCS: Co-Citation Similarity Recommends documents cited by similar citing docu-
ments [69} [04].

B-BC: Bibliographic Coupling Recommends documents with similar references [54].

B-IBCF: Item-Based Collabora- Treats citations as user-item purchases, recommends

tive Filtering items to users that are similar to ones user already
bought.

B-CCP: Co-Citation Proximity Recommends documents that are co-cited and close
together in the text [35].

B-AS: Abstract Similarity Recommends documents with similar text content.

B-STS: Semantic Similarity Recommends documents with similar semantic con-
tent.

B-CA: Co-Authorship Recommends documents with similar/shared au-
thors [78], [96].

A-BS: Beam Search Aggregation Aggregates based on heuristics using beam search [6].

A-BL: Borda Aggregation Aggregates by simply averaging over the ranks [27].

A-MS: Merge Sort Aggregation Aggregates based on merge sort based heuristic [6].

directed DOI-DOI pairs and added into the citation network of Meta which
has roughly 580 million citations. For documents with full-text, if possible, we
also extract pairwise proximities of the references. Finally, the text and se-

mantic tag components of the documents are indexed into an inverted index,
which is built using Hadoop MapReduce [03] based TF-IDF builder [Gg].

3.3 Recommendation Engine

The recommendation algorithms operate on the transformed data in Meta’s
semantic knowledge network. The algorithms are implemented using a diverse
technology stack: Hadoop, Java, Python, and MySQL. Some of the algorithms
depend heavily on the Hadoop based MapReduce framework, while others are
implemented with direct SQL queries. The recommended documents produced
by the base algorithms are aggregated using a number of rank aggregation
algorithms. A list of the base and aggregation recommendation algorithms is
provided in Table |1} In the next section, the recommendation algorithms are
explained in detail.

4 Recommendation Algorithms

The document-to-document recommendation problem can be stated as: given a
database of documents, P where |P| = n and a document, p; that is of interest
to a researcher R, recommend a list of k& documents, RP = (p1,p2,--.,pk) to
R such that p;, j =1,..., k are judged to be related to p; and/or in some way
useful to R. The list may be a partially ordered list such that p; is considered
to be more relevant than p;, j = 2,...,k.

In this work, we focus on implementing and evaluating well-studied recom-
mendation algorithms and analyzing their performance in a large scale biomed-
ical knowledge base. We implemented seven based recommendation algorithms
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Paper E Paper Y Paper Z
Wpa  EEc
TAIIClF)
1A
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Fig. 2: Citation structures of sample documents. Citation-based algorithms
produce the following recommendations for Document E in order: B-CCS —
(A,C); (B,D). B-BC — Z; Y. B-IBCF — (AB,C); D. B-CCP — A; D; B;
C; (F,G).

(as listed in Table[I)) on a database with more than 24 million biomedical doc-
uments. All the research documents do not share the same structure or, if
they do, their full text may not be publicly accessible. Therefore, we consid-
ered the algorithms that would work for such cases, i.e., the ability to leverage
various available data types. We also implemented three different algorithms,
customized for our dataset of biomedical documents, that aggregate results
from the seven base algorithms [B] [6l, 29] [35] [54) 69], 04]. Table [1] summarizes
the recommendation algorithms.

4.1 Base Recommendation Algorithms

The base recommendation algorithms make use of citation information, con-
tent information in abstracts, the full-text of the documents, and authorship
information.

4.1.1 Citation-based Algorithms

We generated a citation network of the documents in our database by gather-
ing citations from 50.9 million documents from across the sciences, meta-data
from 24.6 million PubMed documents and the full-text of over 16 million doc-
uments using a fully automated technique. Our resulting citation network has
over 17 million nodes (which is a subset of the biomedical documents in the 50.9
million documents) and over 350 million edges. The base algorithms that use
the citation network are: Co-Citation Similarity (B-CCS), Bibliographic Cou-
pling (B-BC), Item-Based Collaborative Filtering (B-IBCF), and Co-Citation
Proximity (B-CCP). Figure [2]illustrates a sample data set of three documents
with citations indicated.

Co-Clitation Similarity (B-CCS). Intuitively, documents that are cited by the
same document or co-cited [69] [04] many times are likely to be similar to each
other. This notion of similarity provides us with a basis for the recommenda-
tion. Referring to the example in Figure[2] given Paper E, B-CCS recommends
Documents A and C ahead of Paper B or Paper D because Paper F is co-cited
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with Paper A in two documents (Documents Y Z) and Paper E is co-cited
with Paper C in two documents as well (also Documents Y and Z). However,
Paper FE is only co-cited with Paper B in one document (Paper Z) and is only
co-cited with Paper D in one document (Paper V).

The notion of co-cited documents can be captured by using incoming cita-
tion vectors. Given a citation network that contains n documents, we define
the incoming citation vector vectort, of a paper p; as an n-dimensional bit
vector vectory, = (bi,bh,...,b;,) where 0% = 1 if pj cites p;, otherwise 0% = 0.
Then, p; and py, are co-cited by paper p; if bf =0} = 1. Two documents with
many 1’s in the same position in their incoming citation vectors are co-cited
by many documents.

To recommend documents related to paper p;, we can apply standard vec-
tor similarity metrics such as cosine similarity [98] on vector?, and vector?, for
all documents p; to find documents that are most co-cited with p;. Cosine sim-
ilarity also normalizes similarity scores by the norms of the vectors, intuitively
weighting documents with many incoming citations less than documents with
few incoming citations. However, cosine similarity gives an equal weight to all
coordinates of vector!, and vector],. Suppose there is a hypothetical paper
pi that cites a lot of documents, then for many documents p,, in the vectors
vectory,, by = 1. Conversely, if a paper p. cites few documents, then in the
vectors vectors,, bY = 1 for only a few documents p,. Intuitively, coordinate
¢ should contribute more than &k because it is rarer; two documents co-cited
by a document with few outgoing citations is worth more than being co-cited
by a document with many outgoing citations. To account for this, we normal-
ize the incoming citation vectors by dividing each coordinate of vector!, and
vectorgn by the number of outgoing citations of the document represented by
the coordinate before applying cosine similarity.

The number of pairwise similarity computations grows quadratically with
the number of documents in the database and is around 10'* for 25 million
documents. To speed up this computation, we only consider pairs of documents
with at least one common incoming citation, and this resulted in a 10°-fold
decrease in the number of pairwise similarity computations.

Bibliographic Coupling (B-BC). Documents having similar citation profiles are
intuitively more similar than documents with different citation profiles [54];
this gives us yet another basis for recommendation. In this case, we com-
pute the n-dimensional outgoing citation vector for each paper p; as vout; =
(b3, b, ..., bi,) where b’ = 1 if p; cites p; and b} = 0 otherwise. Then, p; and py,
both cite paper p; if b? = b;- = 1. Two documents with many 1’s in the same
position in their outgoing citation vectors cite many of the same documents.

We then employ the same algorithm used for co-citation similarity (B-CCS)
except with the citation edges reversed. We normalize outgoing citation vec-
tors by penalizing coordinates that represent documents with many incoming
citations (those that are cited by many documents); then, given a document,
we compute the cosine similarity between it and every other document to ob-
tain documents with highly similar citation profiles as recommendations. The
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penalization step is the same as in B-CCS. The intuition behind it is: two
documents citing a document with few incoming citations is worth more than
citing a document with many incoming citations.

In the example in Figure[2] for Paper £, B-BC recommends Paper Z before
Paper Y because Paper Z has more citations in common with Paper E (both
co-cite Documents F' and G). Paper Y only has one citation in common with
Paper E.

Similar to our approach used for pairwise similarity computations in co-
citation similarity (B-CCS) algorithm, we only consider pairs of documents
with at least one common outgoing citation resulting in a 10°-fold decrease in
the number of computations.

Ttem-based Collaborative Filtering (B-IBCF). The item-based collaborative
filtering algorithm is implemented by Apache Hadoop [7]. Using the citation
network, we treat each citation edge as a user-item interaction. Paper p; cit-
ing paper p; represents user p; buying item p;. We treat all our documents as
both items and users and recommend documents (items) to documents (users)
based on citations. We perform the standard item-based collaborative filtering
approach [87]: given a user (document) p;, we want to recommend items (doc-
uments) to p; that p; does not already have (does not already cite), and are
similar to items that p; already has (already cites). Just like the co-citation
similarity algorithms, the similarity is based on vector similarity. Given an
item (p;), its user vector is the binary vector of users (documents) that have
purchased (cited) this item (p;). So, for example, if the incoming citation vec-
tor for paper p; is vectorgn = (b{,bg, ...,bl) where bg = 1 if p; cites p; and
b{ = 0 otherwise, then we consider p; as an item that is bought by those users
p; where b{ = 1. Since these vectors are binary, we use Hadoop’s log-likelihood
vector similarity measure [50] to compute item similarity between items that
user p; has bought, and items that p; does not have and pick the best items
by averaging similarity scores across all items that p; has. Intuitively, given a
paper p;, we recommend documents most similar to its citations (using log-
likelihood similarity, which is intuitively co-citation similarity).

As shown in the example in Figure [2| for Paper E, B-IBCF recommends
Documents A, B, and C because Paper Z (which has more citations in common
with Paper E than Paper Y') cites all of these documents and E does not (i.e.,
does not have them in its list). Next, B-IBCF recommends documents Paper
D because Z does not cite it (have it in its list) but ¥ does. Documents F
and G are not recommended because Paper E also cites (has) them.

The primary difference between B-IBCF and B-CCS is that given an in-
put paper p, B-CCS finds documents closest to p using co-citation similarity.
B-IBCF, however, does not look at the input document, it instead treats the
input document as a set of documents by looking at its citations, and then rec-
ommends documents closest to its citations by averaging co-citation similarity
between its citations and those of other documents.
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Co-Clitation Prozimity (B-CCP). The co-citation proximity approach is based
on citation proximity analysis [35]. The intuition behind the algorithm is that
if citations occur close together in the text of a document, then the cited doc-
uments are likely to be more closely related than if the citations were further
apart. We use a different weighting scheme for the proximity occurrences than
Gipp and Beel [35] and we aggregate the occurrence values.

We processed each paper p to extract all possible citation pairs between
the documents referenced in the citation list of p. Each citation pair is given a
proximity type (group — within the same square brackets, sentence, paragraph,
section, or paper) based on the minimal distance between each citation. The
proximity type is calculated by parsing the structure of the document’s XML
format [I8] or applying minor heuristics.

Relationship weights are used to quantify the different minimum proximi-
ties between citation pairs and are summed across document pairs to indicate
their similarity. For example, co-citations in the same document are assigned
a weight of 1, co-citations in the same section, a weight of 2. If paper p; and
paper p; are cited once within the same sentence (a total relation weight of
4) but paper p; and paper p; are cited within the same section in three ad-
ditional documents (a total relation weight of 2x3 = 6), then paper p; has a
stronger similarity to paper p; than to paper p;. We also experimented with
and applied the approach to larger datasets (over 16 million documents) than
what Gipp and Beel used (1.2 million) [35].

Referring back to the example in Figure [2 for Paper E, B-CCP recom-
mends documents based on minimal citation proximity to Paper E over the
multiple documents in which Paper E is cited (Documents Y and Z). The
recommended documents are ordered as follows: Paper A which is cited in the
same sentence as a citation to Paper F (weight of 4) in Paper Y and in the
same section (weight of 2) in Paper Z (total weight is 6); Paper D which is
cited in the same group as Paper E (weight of 5) in Paper Y; Paper B which
is cited in the same sentence as Paper E (weight of 4) in Paper Z; Paper C
which is cited in the same document (Paper Z) as Paper F (weight of 1) and
in the same section as Paper E (weight of 2) in Paper Y (total weight of 3);
and, Documents F' and G together with each having a weight of 2 (In both
Paper Y and Z, Paper F is cited in the same document as F whichis 14+1 = 2
and Paper G is cited in the same section as Paper F in Paper Z for a weight
of 2).

One issue with this approach is the situation in which paper p; and paper
p; are cited in the same sentence but used to contrast each other [35]. This
is not a significant issue in our case because our large collection of documents
means that consistently co-cited documents will have a stronger connection.
Additionally, even if two documents are co-cited in the context of a disagree-
ment and/or conflict because they propose opposing theories, the fact that
they are frequently co-cited may make them strongly related (i.e., such that
one would be a good recommendation for the other).
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Ranking of similarity with Paper E:

Paper A Paper B Paper C Paper D
Abstract Abstract Abstract Abstract
] —
— _—
— — —
-_—
Keywords from MeSH ontology:
Paper E Paper A Paper B Paper C Paper D
—-— — — —_—

Fig. 3: Example of common words and keywords (based off MeSH ontology)
represented by rectangles in the documents. Content-based algorithms produce
the following recommendations for Paper E in order: B-AS — A, B, C, D
(using words); B-STS — B, A, D, C (using keywords).

4.1.2 Content-Based Algorithms

We can also identify similar documents to recommend based on the content
of the document or its abstract. These similarity-based algorithms make use
of terms and semantic meaning of the terms in the text.

Abstract Similarity (B-AS). Almost every document includes an abstract that
typically summarizes the document’s focus, methods, experiments, results, and
contributions in a succinct and efficient manner. Many knowledge base search
engines index only the abstract (rather than the full-text of the document) be-
cause abstracts provide sufficient information about the full document. Two
documents with similar abstracts are likely to be similar documents; therefore,
we used the text of abstracts as a basis for recommending documents. To de-
termine abstract similarity, we use a TF-IDF similarity measure on the words
of the abstract. TF-IDF is calculated as the product of the term frequency
(TF: the number of times a term ¢ occurs in a document) and the inverse doc-
ument frequency (IDF: a measure of how common or rare the term is across
all documents).

Using the B-AS algorithm to recommend documents for Paper F in Fig-
ure [3] Paper A is recommended before Paper B because Paper A contains
three instances of an infrequent word (highlighted in light purple). Paper B
is recommended before Paper C' because Paper B contains one instance of
the infrequent word and two frequent words (highlighted in green and pink).
Documents C and D both contain frequent words in common with Paper E,
but Paper C' contains more instances of words in common with Paper E (three
vs. two); hence, it is recommended before Paper D.

To obtain accurate TF-IDF similarity, first, we normalize the abstracts
by tokenizing them into words, eliminating external token punctuation, and
stop-word tokens. TF-IDF is then calculated on a token level. We calculate
the inverse document frequency of each token on our entire document abstract
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dataset (size approximately 14 million). Inverse document frequency of a token
t amongst all n documents p; € P in the dataset is defined as:

[ Jlog(n/DF{,P)) if DF(t,P)#0
IDF(t’P)_{o\/ ’ it DF(t, P)=0

where DF(t, P) is the number of documents in the set P in which ¢ occurs.

Then, given two abstracts from documents p; and p;, we compute their
TF-IDF vectors; that is, their abstracts expanded into d-dimensional bit vec-
tors, where d is the number of distinct words that occur in all abstracts (in
our database this is approximately 9 million distinct words) such that each
position in the vector for paper p; contains T'F(t,p;)xIDF(t, P) for the cor-
responding token t. The term frequency T'F of a token ¢ in p; is defined as:
TF(t,p;)=+/count(t,p;), where count(t, p;) is the number of times ¢ occurs in
the abstract of paper p;.

Given the two TF-IDF vectors, T'F' — IDF; and T'F — IDF; for p; and p;
respectively, we compute their cosine similarity to obtain the final similarity
score. Intuitively, this similarity score captures abstracts that share similar
terms, strengthened by the number of times the term occurs in the abstracts
under consideration and penalized by the commonality of the term amongst all
abstracts. Thus, we expect rare terms that occur frequently in both abstracts
to indicate strong similarity between the abstracts.

Suppose for a given paper p; in our dataset, we want to obtain the top
50 documents similar to p; using abstract TF-IDF similarity. This computa-
tion is extremely inefficient as it requires ~ 250000002=6.25x10'* similarity
calculations. Therefore, as a fast approximation for a given document ab-
stract, we consider only those document abstracts that share at least one rare
term with it. We define a term ¢ as rare when DF'(¢, P) < 5000. This step
significantly cuts down the number of similarity calculations to approximately
2x 10! (more than 3, 000-fold decrease). For the top recommended documents,
the abstracts should intuitively share at least one rare term, so this filtering
step should not eliminate too many documents and, in practice, this heuristic
search space reduction strategy works well.

Semantic Similarity (B-STS). The B-AS algorithm is very sensitive to am-
biguity and synonymy problems. To overcome this issue, we aimed to use
semantic relationships to infer indirect mentions. Traditional TF-IDF similar-
ity based systems are not able to identify similarity among different terms for
the same concept but normalized field/concept annotations provide a princi-
pled way to detect and measure similarity. Hence, we applied named entity
recognition algorithms to all documents in our database to identify mentions
of concepts such as gene, chemicals, diseases, and research areas, which are all
included in the MeSH ontology [77].

There are about 28,000 terms and 139,000 supplementary concepts in
MeSH. For every document, we capture a summary of the document based on
the fields it contains. Intuitively, documents that share more fields are more
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similar than documents that share fewer fields. As in the abstract similarity
algorithm (B-AS), we use TF-IDF similarity to compute semantic similarity in
exactly the same way, except instead of using normalized tokens representing
words of the abstract, we use fields associated with the document. TF-IDF in-
herently treats documents that share many rare fields as closest to each other.
The term frequency of a term t and paper p; is either 0 or 1 because our
field/term tagger only tags the existence of each field in a document. As in ab-
stract similarity, we only compare similarities between documents which share
at least one rare field (term, t), where rare is defined as occurring in at most
5,000 documents in the set P of documents: DF (¢, P) < 5000. This heuristic
filtering approach reduces the number of pairs we have to compare to 72.2
billion (6.25 x 10'4) without jeopardizing the quality of the recommendations.

Going back to the example in Figure [3] having reduced the words to their
semantic fields, the frequency of instances within each document no longer
has an impact. Paper B is recommended first because it shares the most infre-
quent terms with Paper E. Paper A and then Paper D are recommended next
because Paper A still contains a term more infrequent than Paper D. Finally,
Paper C' is recommended because it contains one infrequent term in common
with Paper E.

4.1.3 Co-Authorship Similarity (B-CA)

The main idea behind co-authorship based recommendations is that docu-
ments which share authors are likely to be related to each other [78] [96].
We take a simple approach by first building the co-authorship network where
the set of nodes P = {p1,p2,...,pn} represents the set of n documents and
a weighted edge between two documents, (p;,p;) represents the number of
shared co-authors between documents p; and p;. Then, for a given paper p;,
we traverse the co-author network graph to each of its one- and two-hop neigh-
bors p; to calculate the shared-author scores as the sum of the weighted edges
in the path from p; to p;. Each one- and two-hop neighbors p; is ranked by
its shared-author score with p; and the documents with the highest scores are
recommended (ties are broken randomly).

As shown in the example in Figure [d] in one and two hops from Paper E,
Paper B has six co-authors (three on the path E-A-B, one on the path E-B,
and two on the path E-C-B), and, hence, is the first recommendation. Paper
A is next because it has four co-authors on the one- and two-hop paths (one
on E-A and three on E-B-A), while Paper C is last because it only has three
co-authors on the paths (one on E-C, and two on E-B-C).

4.2 Aggregation Algorithms
We implemented three rank aggregation methods [5] [6] 29] to aggregate results

from the base algorithms described above. Given a set of n elements and K
complete rankings or permutations of these elements 71,72, ..., T, the goal
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Fig. 4: Co-authorship structure where common authors are shown as icons
along paths. Recommendations for Document E are as follows: B-CA — B,
A, C.

is to find the Kemeny optimal ranking 7 [53], i.e., the ranking that minimizes
Zf; d(m,m;), where d(-,-) is the number of pairwise disagreements between a
pair of rankings, also known as the Kendall distance. When complete rankings
are not available, we place all the unranked objects at the bottom of the list
and consider all objects in this set to be tied with each other. The problem
of finding the Kemeny optimal ranking is NP-hard [§]. See Ali and Meila [0]
for a comprehensive survey of algorithms to compute Kemeny ranking. We use
three different algorithms to approximate the Kemeny ranking. The precedence
matrix Q € R™ "™ has entries ;; that represent the fraction of times an
element 7 is ranked higher than element j, i.e., Q;;=(1/K) Zszl I(i <z, 7)s
where I(-) is the indicator function, and <, is the precedence operator for
ranking 7.

4.2.1 Beam Search (A-BS)

The set of all permutations can be represented in the form of a tree, where
each permutation can be traced in a path from the root to a leaf. Note that
every path from the root to an internal node in the tree represents a partial
ranking. We use beam search to explore the set of all permutations and output
the optimal ranking. The basic idea is to consider only B candidate solutions
(partial rankings) at each level of the tree, where B is a user-defined parameter
known as beam width, and these candidates represent the best partial rankings
found so far by the heuristic search algorithm. The tree is then explored in
a breadth-first fashion from the root all the way down to the leaves. The
optimal solution is then selected from the best B candidates found at the
lowest level of the tree. A greedy version of the algorithm can be derived by
setting B = 1, where at each level only one candidate solution is considered
greedily. In the other extreme, when B = oo, the algorithm explores all the
possible exponential number of rankings/paths in the tree.
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In order to select the best B candidate solutions at each level of the tree,
we need to define a cost function to score partial rankings. This cost function
can be defined using the precedence matrix @ as: C(mp)= Z(i,j)erp Qij, where
Tp is a partial ranking and {(4, j)} is the set of all pairs (4, j) such that i <, j
in the partial ranking, including transitive pairs. Our implementation of the
algorithm takes about 3.58s/document on a single machine with 8 threads.

4.2.2 Borda Counts (A-BL)

A simple algorithm to aggregate rankings is to rank objects based on their
average ranking computed from all the multiple rankings [27]. This is equiv-
alent to sorting the elements based on the column sum of the precedence
matrix, i.e., argsort; . (Q;;. Our implementation of the algorithm takes about
0.161s/document on a single machine with 8 threads.

4.2.3 Sort-Based Approzimation (A-MS)

Comparison-based sorting algorithms, such as merge sort or quick sort [25],
can be adapted to aggregate rankings using the precedence matrix @ [6]. In-
stead of comparing pairs of elements ¢ and j in the sorting algorithm, we
compare Q;; and Q;;. We refer the reader to [88] for more details on compari-
son sort methods for rank aggregation. In our experiments, we adapted merge
sort to solve the rank aggregation problem. Our implementation takes about
0.159s/paper on a single machine with 8 threads.

5 Evaluation

In this section, first, the evaluation method is explained; then, in Section [5.2
the observations and findings are presented and discussed.

5.1 Approach

We provided 14 expert evaluators, who are active researchers in the biomedi-
cal field, with the output of each recommendation algorithm. The evaluators
selected documents from their field of expertise and then rated the quality of
the recommendations returned for those documents by each of the algorithms
according to six evaluation metrics (see Section [5.1.4)). Figure [5| summarizes
the setting for the evaluation process.

5.1.1 Recruitment and Participants

We advertised for graduate researchers and postdoctoral fellows at a center for
cellular and biomedical research at a major research university. We also asked
them to share the recruitment invitation within their networks. Eventually, 14
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Fig. 5: High-level overview of evaluation experiments detailing how results
from one algorithm were fed into another.

people agreed to participate in our study. Participants were compensated for
their participation.

5.1.2 Presentation

To ensure high-quality annotations and to calibrate the participant ratings, a
random document was returned in each set of recommendations. The par-
ticipants were informed about the existence of random documents. There
were 1,990 random documents inserted into the lists and 1,977 out of 1,990
were rated 1, resulting in greater than 99.3% correctness in accuracy ratings.
Each participant selected 15 documents from their field of study for a total of
14x15=210 documents. There was one duplicate document; thus, a total of 209
documents were used to evaluate the algorithms. Table [2[ shows the number
of documents in different categories of publications. As shown in Table [2] the
majority of the selected are research documents as the primary focus of this
work is research documents. We also compared the keywords associated with
selected documents with the keywords associated with the random documents
to see how similar are the random documents and selected documents. The
results show that 62%, 27%, 26%, 20%, and 5% of the selected documents are
associated with humans, female, male, animals, and mice keywords, respec-
tively. Similarly, 44%, 10%, 9%, 47%, and 19% of the random documents are
associated with the aforementioned keywords, respectively.
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Table 2: Distribution of participants’ selected documents in different publica-
tion categories.

Category Number of Documents

research support non-u.s. government 155
research support, extramural 60
research support, u.s. government, 33
funding support by Public Health Service (p.h.s)

research support, u.s. government, non-p.h.s. 2
review

comparative study

research support n.i.h. intramural

comment

validation study

evaluation study

research support american recovery and reinvestment act

=== W o 00 00 00

5.1.3 Document Selection

Participants were instructed to select research documents that they knew well
and were told that they would need to be able to judge the correctness, inter-
estingness, and relatedness of the recommended documents. In selecting the 15
documents, participants were also asked to try to select documents as diverse
as possible: some old, but mostly relatively new documents (last four to five
years); some from high impact journals, and some from medium or low impact
journals. They were told that there was no restriction on the subject as long
as the document was in the biomedical field and indexed in PubMed.

5.1.4 Scoring Criteria and Metrics

For each document, the top 9 recommended documents returned by each algo-
rithm (plus one random document) were provided to participants. The partic-
ipants were asked to rate each individual recommended document on a scale of
1 to 3 according to accuracy, that indicates the relevance and relatedness of the
recommended documents to the selected document, (1 is not at all accurate,
2 is somewhat accurate and 3 is very accurate). The evaluation metrics [52]
(besides accuracy) are:

— Coverage: Checks that highly relevant documents are not missing.
Diversity: Measures diversity of the recommended documents according
to factors such as time, author, topic, and method.

Nowelty Indicates that the user did not know about the recommended
documents before.

— Serendipity: Means that the documents are both novel and surprising.
Usefulness: Measures the value of the recommendations to the user’s
research.
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5.1.5 Analysis

For each recommendation algorithm, first, we measure the distribution of eval-
uation scores (i.e., very, somewhat, and not at all) across each metric (see Fig-
ure @ Then, in order to rank the performance of each recommendation al-
gorithm, we apply the Scott-Knott test [90] on the ratings with a confidence
level of 95% (a = 0.05). The Scott-Knott test is a classification technique that
ranks the performance of the algorithms into statistically distinct groups of
ranks. It recursively divides the algorithms into two statistically significantly
different groups of ranks (if possible), and repeats this process on the divided
groups. The test continues until no group of algorithms could be divided. The
output of the Scott-Knott test is an ordered set of recommendation algorithms

(see Figure [7)).

5.2 Findings

We begin by presenting the results of the evaluators’ scores for the docu-
ments recommended by each algorithm. Figure [6] shows the distribution of the
scores for the recommended documents. Of the 209 documents selected by the
evaluators, we were able to generate recommendations for 157 documents us-
ing B-AS and B-CA algorithms, 148 documents using B-CCS, 131 documents
using B-IBCF, 129 using B-STS, 128 using B-BC, and 114 using B-CCP. Fig-
ure [7] illustrates the output of the Scott-Knott test across each metric. Each
document had recommendations from a minimum of two base recommenders.
Based on the number of times an algorithm is listed within the top-performing
set of algorithms, the overall best algorithm is B-CCP (Co-Citation Proximity)
as it is ranked amongst the best algorithms across five metrics (see Table [3)).
In what follows, we discuss the performance of each algorithm in detail across
each metric.

5.2.1 Accuracy

Accuracy is an important metric as it is an assessment of the relevance and
relatedness of the recommended documents to the selected document. As in
Figure [6] B-CCP, that uses co-citations to recommend documents, achieves
the best accuracy scores indicating 62.85% wvery accurate results. In addition,
B-CCP outperforms other algorithms when it comes to accuracy as depicted
in Figure [7] In contrast, B-CA has the weakest performance amongst the
evaluated algorithms with only 29.63% very accurate results. Moreover, B-CA
is the only algorithm that scores lower than two on average which suggests
that the rest of the algorithms all recommend somewhat or very accurate
documents. The notion behind co-authorship-based recommendations does not
necessarily optimize for accuracy. Indeed, in the age of increasingly multi-
disciplinary studies and multi-authored documents, we find it reasonable that
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Fig. 6: Normalized distribution of the evaluators’ ratings (i.e., scores) across
each metric. The top (green), middle (red), and bottom (gray) colors indicate
the percentages of scores that are marked as very, somewhat, and not at all,
respectively. The algorithms are ordered by the proportion of the responses
that indicate very scores.

co-authorship-based recommendations are not as accurate as other methods
which directly optimize for content or citation similarity.

The algorithms that stand in the second place are A-MS, A-BL, A-BS,
and B-AS; except for B-AS, the rest of algorithms in the second rank are
aggregation algorithms. Overall, the aggregation algorithms (i.e., A-BS, A-
BL, and A-MS) perform better than the base algorithms (with the exception
of B-CCP) as they are all in the top-performing group with a mean score of
2.4, and they succeed in harnessing the better recommendations from the base
algorithms.

Figure[§shows the correlation structure according to Spearman rank corre-
lation (p) [I00] as well as the clustering of six metrics we used for evaluation.
Accuracy and novelty are slightly negatively correlated (p = —0.06). Novel
recommendations are the ones that the researchers did not know about before
and so may be more likely to be rated as not accurate. The negative correla-
tion disappears between accuracy and serendipity (p = 0.17), as by definition
a serendipitous recommendation needs to be surprising in a good way which
would be very unlikely if the recommendation is not accurate.

B-CCP (Co-Citation Proximity) outperforms all the other algorithms
with the highest average accuracy (i.e., 2.48/3), whereas B-CA (Co-
Authorship) performs the worst with a mean accuracy of 1.9/3.
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Fig. 7: Groups of ranks of the recommendation algorithms.

5.2.2 Coverage

The Scott-Knott test (Figure divides the algorithms into two groups of
ranks where one group outperforms the other one in terms of coverage. B-AS,
B-CCS, B-CCP, and B-BC are the base algorithms that are ranked as the top
ones. The only aggregation algorithm that is amongst the top algorithms is
A-BS which aggregates the base algorithms using beam search. As shown in
Figures [6] and [7] all algorithms perform poorly on the coverage; except for B-
AS, that compares the abstracts of documents, the rest of algorithms received
a mean evaluation score of less than two.

Recommendation algorithms score between 1.72/3 and 2.10/3 on cov-
erage. B-AS (Abstract Similarity) recommend documents with the best
coverage (i.e., 2.1/3) while B-IBCF (Item-Based Collaborative Filter-
ing) has the weakest performance in terms of coverage (i.e., 1.72/3).

5.2.3 Diversity

For the diversity metric, which seems to be weakly interacting with other met-
rics (see Figure, all algorithms except B-IBCF and B-CA do relatively well.
In particular, all the other base algorithms perform very close to each other
(with an average score of between 2.27 and 2.50). The aggregation algorithms,
as shown in Figure [7] are all placed in the second rank on diversity while
four base algorithms (B-AS, B-CCS, B-BC, and B-CCP) hold the first place.
Moreover, as in Figure[6] all the algorithms except B-IBCF and B-CA achieve
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Fig. 8: Spearman rank correlation between evaluation metrics.

a proportion of less than 10% not at all diverse results. Interestingly, the doc-
uments that were recommended by A-MS, A-BL, and B-AS were almost all
very or somewhat diverse documents with only 2.29%, 2.30%, and 2.37% not
at all diverse recommendations.

In the analysis of novelty, diversity, and serendipity metrics, a different
picture emerges. It is evident, and perhaps not surprising, that usefulness,
accuracy and coverage are highly correlated with each other (p > 0.69), while
novelty and serendipity are tightly correlated as well (p = 0.57). diversity on
the other hand shows moderate correlation (between p = 0.27 and p = 0.34)
with all the metrics, but strong (anti)correlation with none.

Ezcept for B-IBCF (Item-Based Collaborative Filtering) and B-CA
(Co-Authorship), all algorithms perform similarly well in recommend-
ing very or somewhat diverse documents with an average score of be-
tween 2.27 and 2.50.

5.2.4 Nowvelty

Regarding the novelty metric, the recorded scores are between 2.0 and 2.3 on
average. As depicted in Figure[7] the Scott-Knott test divides the algorithms
into two groups of ranks. All algorithms perform relatively well and achieve
an average score of more than 2.01, yet the average scores for the first group
of ranks are more than 2.21. Four base algorithms, i.e., B-CCS, B-AS, B-BC,
and B-STS, are ranked in the first place for recommending novel documents.
However, none of the aggregation algorithms are placed in the first group of
ranks (Figureﬁ[)7 and they are all placed in the second rank. Given the interac-
tions between metrics, an intuitive explanation of this phenomenon might be
that the aggregation algorithms inherently try to increase consensus and hence
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focus on the overlapping recommendations across the base algorithms, which
in turn reduces the nowvelty. This is because the more a document appears in
the recommended list of documents of diverse algorithms, the less it is likely
to be a novel one.

All the recommendation algorithms perform relatively well and achieve
an average novelty score of more than 2.01/3 on average. Four base al-
gorithms, including B-CCS (Co-Citation Similarity), B-AS (Abstract
Similarity), B-BC (Bibliographic Coupling), and B-STS (Semantic
Similarity), are placed in the first group of ranks with an average score
of more than 2.21/3.

5.2.5 Serendipity

Moving to the serendipity, strong performers are B-CCP, A-MS, A-BL, and
A-BS (Figures |§| and. Three aggregation algorithms perform well in terms of
recommending serendipitous documents. Intuitively, in order to achieve high
serendipity scores, the recommendation has to be good in some sense in ad-
dition to being novel. The aggregation algorithms strike a balance between
keeping some nowvelty and goodness of recommendations. On the serendipity
metric, we observe a clear dominance of the aggregation algorithms over base
recommenders, with the exception of B-CCP that also performs well regardless
of being a base algorithm. B-CCP is the only base algorithm that is statisti-
cally significantly better than all the other base algorithms. The top-ranked
algorithms achieve an average score of between 2.36 and 2.47. The weakest
three algorithms with an average score of below 2 are B-STS, B-CA, and B-
IBCF. This might be because the approaches that are designed to increase
serendipity rely on different heuristics, such as returning uncertain results,
to generate surprising and unexpected recommendations [52]. However, the
aforementioned algorithms use citations, authors, and semantic contents for
recommendations that can reduce the “surprise” factor of the returned doc-
uments. Comparing the evaluation results of B-CCP and B-CCS, we observe
that although B-CCP is lower in novelty, i.e., users did not know about the
recommended documents before, B-CCP ranks higher for serendipity, i.e., rec-
ommended documents are both novel and surprising. In other words, B-CCP
does not produce a lot of novel documents in comparison to B-CCS but the
ones that are produced are surprising ones.

Aggregation algorithms, including A-MS (Merge Sort Aggregation), A-
BL (Borda Aggregation), and A-BS (Beam Search Aggregation), plus
B-CCP (Co-Citation Prozimity) outperform all the other base algo-
rithms on serendipity metric. On the other hand, B-STS (Semantic
Similarity), B-CA (Co-Authorship), and B-IBCF' (ITtem-Based Collab-
orative Filtering) are the weakest algorithms with an average serendip-
ity score of below 2/3.
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5.2.6 Usefulness

Similar to serendipity, in addition to B-CCP and B-AS, all the aggregation
algorithms are amongst the top-performing algorithms. Indeed, this pattern is
very similar to the serendipity metric and can easily be explained by the fact
that usefulness and serendipity are correlated with p = 0.48. As such, optimiz-
ing for usefulness seems to have also optimized and achieved top results for
serendipity metric as well. B-CA and B-IBCF have the weakest performance
on usefulness with an average score of 1.8/3. A reason for such a relatively
weak performance can be their recommendation strategy where B-CA returns
the documents that have similar or the same authors and B-IBCF recommends
documents with similar citations.

Aggregation algorithms, including A-MS (Merge Sort Aggregation), A-
BL (Borda Aggregation), and A-BS (Beam Search Aggregation), along
with two base algorithms, including B-CCP (Co-Citation Prozimity)
and B-AS (Abstract Similarity), have the best performance in recom-
mending useful documents.

Table 3| summarizes the total number of times each algorithm was amongst
the best performers. As shown in Table 3] B-CCP hits the best performance
for five evaluation metrics, while novelty is the only area that B-CCP is not
ranked in the first place. However, despite being in the second place on nowvelty,
it achieves an average score of 2/3 which is an acceptable score (having consid-
ered that the score of 2 means somewhat novel). The second best algorithm,
in terms of the number of times it appears in the first place, is B-AS which is
another base algorithm. B-AS uses abstract similarity approach and performs
relatively well in terms of coverage, diversity, serendipity, and usefulness. The
third place belongs to an aggregation algorithm, i.e., A-BS, that applies beam
search in order to aggregate the recommendations from the base algorithms.

On the other hand, the worst overall performance belongs to B-IBCF and
B-CA. B-IBCF applies an item-based collaborative filtering approach and B-
CA recommends according to shared or similar co-authors. This observation
suggests that co-authorship and item-based collaborative filtering are not well
suited for biomedical research applications.

The best overall performance is achieved by B-CCP (Co-Citation Prox-
imity) being ranked in the first place for five of the evaluation metrics.
On the other hand, the worst performance belongs to B-IBCF (Item-
Based Collaborative Filtering) and B-CA (Co-Authorship). Depending
on the metric(s) of interest, an appropriate algorithm should be selected
according to Table[3}
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Table 3: Total number of times when each algorithm is ranked in the first place
by the Scott-Knott test [90] across each metric.

Algorithm Metric
go Total Accuracy Coverage Diversity Novelty Serendipity Usefulness

B-CCP 5 v’ v’ v’ N v’
B-AS 4 v’ v’ v’ v’
A-BS 3 N N v’
B-CCS 3 v’ v’ v’

B-BC 3 v’ v’ v’

A-BL 2 N v’
A-MS 2 N N
B-STS 1 v’

B-IBCF 0

B-CA 0

5.3 Limitations

We study seven base algorithms and three aggregations that are commonly
used [5, [6] 29] [35] 54 [69, 94] because the focus of our study is evaluating well-
studied recommendation algorithms and analyzing their performance in large
scale production knowledge bases. However, future studies should shed more
light on other recommendation algorithms such as rank-based aggregation and
LP approximation (A-LP). A-LP solves the problem of finding the Kemeny
optimal ranking by posing it as an integer linear program (ILP) [3]. Unlike
other aggregation algorithms, the amount of overlap p has a significant effect
on the runtime complexity of A-LP as the reduction in the number of variables
and constraints is quadratic and cubic in 1/p, respectively. Also, adding more
base algorithms will affect LP more than other aggregation methods, unless
p increases by the same rate. We omitted using the LP-based algorithm as it
was prohibitively slow for the majority of papers. Therefore, even though the
LP can be solved using off-the-shelf LP solvers, in practice, we found this to
be prohibitively expensive due to a large number of transitivity constraints.
Furthermore, in our implementation of algorithms, for example, we use the
TF-IDF in order to measure similarities (see Section . Future research can
expand our findings using other solutions such as word embedding.

For the evaluations (see Section , our participants were graduate re-
searchers and postdoctoral fellows at a center for cellular and biomedical re-
search at a major research university so they were all early career researchers.
Future experiments could include researchers at various career stages. Each of
the 14 participant selected 15 documents with a total of 209 documents (see
Section . We used the 209 documents to evaluate the algorithms. Future
studies can expand this work by inviting more participants with more docu-
ments. We asked participants to rate the recommended papers based on their
qualitative assessment of accuracy, coverage, diversity, novelty, serendipity,
and usefulness. There are other measures that could be used and participants
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could be asked to provide more general assessments (rather than ratings).
Future work could also consider quantitative assessments [L0] 13}, [19, [30] [70].

6 Conclusion

In this paper, we discuss the implementation and evaluation of seven base
recommendation algorithms and three aggregation algorithms, aimed at pro-
viding relevant document recommendations for biomedical knowledge bases.
The base recommendation algorithms utilize diverse sets of features, such as a
citation network, text content, semantic tags, and co-authorship information.

We conducted a qualitative experiment to identify the quality of recommen-
dation algorithms for biomedical researchers. We compared the performance of
the algorithms on six metrics and identified the algorithms that perform better
according to each. For each metric, we rank the algorithms using the Scott-
Knott test. For example, B-CCP is ranked first for accuracy and it outperforms
all the other algorithms with the highest average accuracy (i.e., 2.48/3). How-
ever, we find that, on average, the majority of the algorithms (nine out of ten)
recommend documents that are somewhat or very accurate. The best over-
all performance is achieved by B-CCP (Co-Citation Proximity) being ranked
in the first place according to five of the evaluation metrics (i.e., accuracy,
coverage, diversity, serendipity, and usefulness).

Results of the experiments demonstrate the impact of limitations in the
upstream algorithms. For example, recommendation algorithms that rely on
semantic similarity require semantic tags for most documents in the knowledge
base and author similarity requires author disambiguation within the knowl-
edge base. The results of the study have had a real-world impact in helping to
determine which algorithms to deploy in the Meta production system.

In the future, we will focus on personalizing the user experience, which
is an active research area [IT], [60], by making recommendations based on the
user’s document library, past reading lists, social interactions, and interests
(e.g., identified through subscriptions to researchers and topics) automatically
without any input from the user. The findings of this study can also be used
to develop similar recommendation systems for other entity types (i.e., au-
thors, journals, institutions, and concepts) that constitute Meta’s semantic
knowledge network.
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